process of fermentation. So far back as the beginning of the 16th century, in the times of transition between the old alchemy and the modern chemistry, there was a remarkable man, Von Helmont, a Dutchman, who saw the difference between the air which comes out of a vat where something is fermenting and common air. He was the man who invented the term "gas," and he called this kind of gas "gas silvestre"--so to speak gas that is wild, and lives in out of the way places--having in his mind the identity of this particular kind of air with that which is found in some caves and cellars. Then, the gradual process of investigation going on, it was discovered that this substance, then called "fixed air," was a poisonous gas, and it was finally identified with that kind of gas which is obtained by burning charcoal in the air, which is called "carbonic acid." Then the substance alcohol was subjected to examination, and it was found to be a combination of carbon, and hydrogen, and oxygen. Then the sugar which was contained in the fermenting liquid was examined and that was found to contain the three elements carbon, hydrogen, and oxygen. So that it was clear there were in sugar the fundamental elements which are contained in the carbonic acid, and in the alcohol. And then came that great chemist Lavoisier, and he examined into the subject carefully, and possessed with that brilliant thought of his which happens to be propounded exactly apropos to this matter of fermentation--that no matter is ever lost, but that matter only changes its form and changes its combinations--he endeavoured to make out what became of the sugar which was subjected to fermentation. He thought he discovered that the whole weight of the sugar was represented by the carbonic acid produced; that in other words, supposing this tumbler to represent the sugar, that the action of fermentation was as it were the splitting of it, the one half going away in the shape of carbonic acid, and the other half going away in the shape of alcohol. Subsequent inquiry, careful research with the refinements of modern chemistry, have been applied to this problem, and they have shown that Lavoisier was not quite correct; that what he says is quite true for about 95 per cent. of the sugar, but that the other 5 per cent., or nearly so, is converted into two other things; one of them, matter which is called succinic acid, and the other matter which is called glycerine, which you all know now as one of the commonest of household matters. It may be that we have not got to the end of this refined analysis yet, but at any rate, I suppose I may say--and I speak with some little hesitation for fear my friend Professor Roscoe here may pick me up for trespassing upon his province--but I believe I may say that now we can account for 99 per cent. at least of the sugar, and that 99 per cent. is split up into these four things, carbonic acid, alcohol, succinic acid, and glycerine. So that it may be that none of the sugar whatever disappears, and that only its parts, so to speak, are re-arranged, and if any of it disappears, certainly it is a very small portion.
Now these are the facts of the case. There is the fact of the growth of the yeast plant; and there is the fact of the splitting up of the sugar. What relation have these two facts to one another?
For a very long time that was a great matter of dispute. The early French observers, to do them justice, discerned the real state of the case, namely, that there was a very close connection between the actual life of the yeast plant and this operation of the splitting up of the sugar; and that one was in some way or other connected with the other. All investigation subsequently has confirmed this original idea. It has been shown that if you take any measures by which other plants of like kind to the torula would be killed, and by which the yeast plant is killed, then the yeast loses its efficiency. But a capital experiment upon this subject was made by a very distinguished man, Helmholz, who performed an experiment of this kind. He had two vessels--one of them we will suppose full of yeast, but over the bottom of it, as this might be, was tied a thin film of bladder; consequently, through that thin film of bladder all the liquid parts of the yeast would go, but the solid parts would be stopped behind; the torula would be stopped, the liquid parts of the yeast would go. And then he took
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.