The Working of Steel | Page 3

Fred H. Colvin
Fig. 3. Air and gas enter the hearth through chambers loosely packed with hot fire brick, burn, and exit to the chimney through another pair of chambers, giving to them some of the heat which would otherwise waste. The direction is reversed about every twenty minutes by changing the position of the dampers.
CRUCIBLE STEEL
Crucible steel is still made by melting material in a clay or graphite crucible. Each crucible contains about 40 lb. of best puddled iron, 40 lb. of clean "mill scrap"--ends trimmed from tool steel bars--and sufficient rich alloys and charcoal to make the mixture conform to the desired chemical analysis. The crucible is covered, lowered into a melting hole (Fig. 4) and entirely surrounded by burning coke. In about four hours the metal is converted into a quiet white hot liquid. Several crucibles are then pulled out of the hole, and their contents carefully poured into a metal mold, forming an ingot.
[Illustration: FIG. 4.--Typical crucible furnace.]
If modern high-speed steel is being made, the ingots are taken out of the molds while still red hot and placed in a furnace which keeps them at this temperature for some hours, an operation known as annealing. After slow cooling any surface defects are ground out. Ingots are then reheated to forging temperature, hammered down into "billets" of about one-quarter size, and 10 to 20 per cent of the length cut from the top. After reheating the billets are hammered or rolled into bars of desired size. Finished bars are packed with a little charcoal into large pipes, the ends sealed, and annealed for two or three days. After careful inspection and testing the steel is ready for market.
THE ELECTRIC PROCESS
The fourth method of manufacturing steel is by the electric furnace. These furnaces are of various sizes and designs; their size may be sufficient for only 100 lb. of metal--on the other hand electric furnaces for making armor-plate steel will hold 40 tons of steel. Designs vary widely according to the electrical principles used. A popular furnace is the 6-ton Heroult furnace illustrated in Fig. 5.
It is seen to be a squat kettle, made of heavy sheet steel, with a dished bottom and mounted so it can be tilted forward slightly and completely drained. This kettle is lined with special fire brick which will withstand most intense heat and resist the cutting action of hot metal and slag. For a roof, a low dome of fire brick is provided. The shell and lining is pierced in front for a pouring spout, and on either side by doors, through which the raw material is charged.
Two or three carbon "electrodes"--18-in. cylinders of specially prepared coke or graphite--extend through holes in the roof. Electrical connections are made to the upper ends, and a very high current sent through them. This causes tremendous arcs to form between the lower ends of the electrodes and the metal below, and these electric arcs are the only source of heat in this style of furnace.
Electric furnaces can be used to do the same work as is done in crucible furnaces--that is to say, merely melt a charge of carefully selected pure raw materials. On the other hand it can be used to produce very high-grade steel from cheap and impure metal, when it acts more like an open-hearth furnace. It can push the refining even further than the latter furnace does, for two reasons: first the bath is not swept continuously by a flaming mass of gases; second, the temperature can be run up higher, enabling the operator to make up slags which are difficult to melt but very useful to remove small traces of impurities from the metal.
Electric furnaces are widely used, not only in the iron industry, but in brass, copper and aluminum works. It is a useful melter of cold metal for making castings. It can be used to convert iron into steel or vice versa. Its most useful sphere, however, is as a refiner of metal, wherein it takes either cold steel or molten steel from open hearth or bessemer furnaces, and gives it the finishing touches.
[Illustration: FIG. 5.--"Slagging off" an electric furnace.]
[Illustration: FIG. 6.--Pouring the ingots.]
As an illustration of the furnace reactions that take place the following schedule is given, showing the various stages in the making of a heat of electric steel. The steel to be made was a high-carbon chrome steel used for balls for ball bearings:
6-TON HEROULT FURNACE
11:50 A.M.--Material charged: Boiler plate 5,980 lb. Stampings 5,991 lb. ----------- 11,971 lb. Limestone 700 lb. 12:29 P.M.--Completed charging (current switched on). 3:20 P.M.--Charge melted down. Preliminary analysis under black slag. Analysis: Carbon Silicon Sulphur Phosphorus Manganese 0.06 0.014 0.032 0.009 0.08 Note the practical elimination of phosphorus. 3:40 P.M.--The oxidizing (black) slag is now poured and skimmed off as clean as possible
Continue reading on your phone by scaning this QR Code

 / 97
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.