The Story of Germ Life | Page 4

H.W. Conn
use. So difficult were the investigations, that for years there were hardly any investigators besides Pasteur who could successfully handle the subject and reach conclusions which could stand the test of time. For the next thirty years, although investigators and investigations continued to increase, we can find little besides dispute and confusion along this line. The difficulty of obtaining for experiment any one kind of bacteria by itself, unmixed with others (pure cultures), rendered advance almost impossible. So conflicting were the results that the whole subject soon came into almost hopeless confusion, and very few steps were taken upon any sure basis. So difficult were the methods, so contradictory and confusing the results, because of impure cultures, that a student of to-day who wishes to look up the previous discoveries in almost any line of bacteriology need hardly go back of 1880, since he can almost rest assured that anything done earlier than that was more likely to be erroneous than correct.
The last fifteen years have, however, seen a wonderful change. The difficulties had been mostly those of methods of work, and with the ninth decade of the century these methods were simplified by Robert Koch. This simplification of method for the first time placed this line of investigation within the reach of scientists who did not have the genius of Pasteur. It was now possible to get pure cultures easily, and to obtain with such pure cultures results which were uniform and simple. It was now possible to take steps which had the stamp of accuracy upon them, and which further experiment did not disprove. From the time when these methods were thus made manageable the study of bacteria increased with a rapidity which has been fairly startling, and the information which has accumulated is almost formidable. The very rapidity with which the investigations have progressed has brought considerable confusion, from the fact that the new discoveries have not had time to be properly assimilated into knowledge. Today many facts are known whose significance is still uncertain, and a clear logical discussion of the facts of modern bacteriology is not possible. But sufficient knowledge has been accumulated and digested to show us at least the direction along which bacteriological advance is tending, and it is to the pointing out of these directions that the following pages will be devoted.
WHAT ARE BACTERIA?
The most interesting facts connected with the subject of bacteriology concern the powers and influence in Nature possessed by the bacteria. The morphological side of the subject is interesting enough to the scientist, but to him alone. Still, it is impossible to attempt to study the powers of bacteria without knowing something of the organisms themselves. To understand how they come to play an important part in Nature's processes, we must know first how they look and where they are found. A short consideration of certain morphological facts will therefore be necessary at the start.
FORM OF BACTERIA.
In shape bacteria are the simplest conceivable structures. Although there are hundreds of different species, they have only three general forms, which have been aptly compared to billiard balls, lead pencils, and corkscrews. Spheres, rods, and spirals represent all shapes. The spheres may be large or small, and may group themselves in various ways; the rods may be long or short, thick or slender; the spirals may be loosely or tightly coiled, and may have only one or two or may have many coils, and they may be flexible or stiff; but still rods, spheres, and spirals comprise all types.
In size there is some variation, though not very great. All are extremely minute, and never visible to the naked eye. The spheres vary from 0.25 u to 1.5 u (0.000012 to 0.00006 inches). The rods may be no more than 0.3 u in diameter, or may be as wide as 1.5 u to 2.5 u, and in length vary all the way from a length scarcely longer than their diameter to long threads. About the same may be said of the spiral forms. They are decidedly the smallest living organisms which our microscopes have revealed.
In their method of growth we find one of the most characteristic features. They universally have the power of multiplication by simple division or fission. Each individual elongates and then divides in the middle into two similar halves, each of which then repeats the process. This method of multiplication by simple division is the distinguishing mark which separates the bacteria from the yeasts, the latter plants multiplying by a process known as budding. Fig. 2 shows these two methods of multiplication.
While all bacteria thus multiply by division, certain differences in the details produce rather striking differences in the results. Considering first the spherical forms, we find that some species divide, as described, into two, which separate at once, and
Continue reading on your phone by scaning this QR Code

 / 65
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.