that Fuchs made a careful study of the infection of "blue milk," reaching the correct conclusion that the infection was caused by a microscopic organism which he discovered and carefully studied. It is true that Henle made a general theory as to the relation of such organisms to diseases, and pointed out the logically necessary steps in a demonstration of the causal connection between any organism and a disease. It is true also that a general theory of the production of ail kinds of fermentation by living organisms had been advanced. But all these suggestions made little impression. On the one hand, bacteria were not recognised as a class of organisms by themselves--were not, indeed, distinguished from yeasts or other minute animalcuise. Their variety was not mistrusted and their significance not conceived. As microscopic organisms, there were no reasons for considering them of any more importance than any other small animals or plants, and their extreme minuteness and simplicity made them of little interest to the microscopist. On the other hand, their causal connection with fermentative and putrefactive processes was entirely obscured by the overshadowing weight of the chemist Liebig, who believed that fermentations and putrefactions were simply chemical processes. Liebig insisted that all albuminoid bodies were in a state of chemically unstable equilibrium, and if left to themselves would fall to pieces without any need of the action of microscopic organisms. The force of Liebig's authority and the brilliancy of his expositions led to the wide acceptance of his views and the temporary obscurity of the relation of microscopic organisms to fermentative and putrefactive processes. The objections to Liebig's views were hardly noticed, and the force of the experiments of Schwann was silently ignored. Until the sixth decade of the century, therefore, these organisms, which have since become the basis of a new branch of science, had hardly emerged from obscurity. A few microscopists recognised their existence, just as they did any other group of small animals or plants, but even yet they failed to look upon them as forming a distinct group. A growing number of observations was accumulating, pointing toward a probable causal connection between fermentative and putrefactive processes and the growth of microscopic organisms; but these observations were known only to a few, and were ignored by the majority of scientists.
It was Louis Pasteur who brought bacteria to the front, and it was by his labours that these organisms were rescued from the obscurity of scientific publications and made objects of general and crowning interest. It was Pasteur who first successfully combated the chemical theory of fermentation by showing that albuminous matter had no inherent tendency to decomposition. It was Pasteur who first clearly demonstrated that these little bodies, like all larger animals and plants, come into existence only by ordinary methods of reproduction, and not by any spontaneous generation, as had been earlier claimed. It was Pasteur who first proved that such a common phenomenon as. the souring of milk was produced by microscopic organisms growing in the milk. It was Pasteur who first succeeded in demonstrating that certain species of microscopic organisms are the cause of certain diseases, and in suggesting successful methods of avoiding them. All these discoveries were made in rapid succession. Within ten years of the time that his name began to be heard in this connection by scientists, the subject had advanced so rapidly that it had become evident that here was a new subject of importance to the scientific world, if not to the public at large. The other important discoveries which Pasteur made it is not our purpose to mention here. His claim to be considered the founder of bacteriology will be recognised from what has already been mentioned. It was not that he first discovered the organisms, or first studied them; it was not that he first suggested their causal connection with fermentation and disease, but it was because he for the first time placed the subject upon a firm foundation by proving with rigid experiment some of the suggestions made by others, and in this way turned the attention of science to the study of micro-organisms.
After the importance of the subject had been demonstrated by Pasteur, others turned their attention in the same direction, either for the purpose of verification or refutation of Pasteur's views. The advance was not very rapid, however, since bacteriological experimentation proved to be a subject of extraordinary difficulty. Bacteria were not even yet recognised as a group of organisms distinct enough to be grouped by themselves, but were even by Pasteur at first confounded with yeasts. As a distinct group of organisms they were first distinguished by Hoffman in 1869, since which date the term bacteria, as applying to this special group of organisms, has been coming more and more into
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.