first and the last observed sidewise movements is 4.2, and that of the two most extreme of the calculated numbers is 4.4.
This result is of importance, because thereby the theory is excluded, or at least made extremely improbable, that the phenomenon of refraction is to be ascribed to, a ring of vapor surrounding the sun for a great distance. Indeed, such a refraction should cause a deviation in the observed direction, and, in order to produce the displacement of one of the stars under observation itself a slight proximity of the vapor ring should be sufficient, but we have every reason to expect that if it were merely a question of a mass of gas around the sun the diminishing effect accompanying a removal from the sun should manifest itself much faster than is really the case. We cannot speak with perfect certainty here, as all the factors that might be of influence upon the distribution of density in a sun atmosphere are not well enough known, but we can surely demonstrate that in case one of the gasses with which we are acquainted were held in equilibrium solely by the influence of attraction of the sun the phenomenon should become much less as soon as we got somewhat further from the edge of the sun. If the displacement of the first star, which amounts to 1.02-seconds were to be ascribed to such a mass of gas, then the displacement of the second must already be entirely inappreciable.
So far as the absolute extent of the displacements is concerned, it was found somewhat too great, as has been shown by the figures given above; it also appears from the final result to be 1.98 for the edge of the sun--i.e., 13 per cent, greater than the theoretical value of 1.75. It indeed seems that the discrepancies may be ascribed to faults in observations, which supposition is supported by the fact that the observations at Prince's Island, which, it is true, did not turn out quite as well as those mentioned above, gave the result, of 1.64, somewhat lower than Einstein's figure.
(The observations made with a second instrument at Sobral gave a result of 0.93, but the observers are of the opinion that because of the shifting of the mirror which reflected the rays no value is to be attached to it.)
DIFFICULTY EXAGGERATED
During a discussion of the results obtained at a joint meeting of the Royal Society and the Royal Astronomical Society held especially for that purpose recently in London, it was the general opinion that Einstein's prediction might be regarded as justified, and warm tributes to his genius were made on all sides. Nevertheless, I cannot refrain, while I am mentioning it, from expressing my surprise that, according to the report in The Times there should be so much complaint about the difficulty of understanding the new theory. It is evident that Einstein's little book "About the Special and the General Theory of Relativity in Plain Terms," did not find its way into England during wartime. Any one reading it will, in my opinion, come to the conclusion that the basic ideas of the theory are really clear and simple; it is only to be regretted that it was impossible to avoid clothing them in pretty involved mathematical terms, but we must not worry about that.
I allow myself to add that, as we follow Einstein, we may retain much of what has been formerly gained. The Newtonian theory remains in its full value as the first great step, without which one cannot imagine the development of astronomy and without which the second step, that has now been made, would hardly have been possible. It remains, moreover, as the first, and in most cases, sufficient, approximation. It is true that, according to Einstein's theory, because it leaves us entirely free as to the way in which we wish to represent the phenomena, we can imagine an idea of the solar system in which the planets follow paths of peculiar form and the rays of light shine along sharply bent lines--think of a twisted and distorted planetarium--but in every case where we apply it to concrete questions we shall so arrange it that the planets describe almost exact ellipses and the rays of light almost straight lines.
It is not necessary to give up entirely even the ether. Many natural philosophers find satisfaction in the idea of a material intermediate substance in which the vibrations of light take place, and they will very probably be all the more inclined to imagine such a medium when they learn that, according to the Einstein theory, gravitation itself does not spread instantaneously, but with a velocity that at the first estimate may be compared with that of light. Especially in former years were such interpretations current and
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.