The Einstein Theory of Relativity | Page 7

H.A. Lorentz
speed along a horizontal line, without varying from it in the slightest.
A ray of light can do the same; everybody will admit that in each case, if there is no gravitation, light will certainly extend itself in a rectilinear way. If we limit the light to a flicker of the slightest duration, so that only a little bit, C, of a ray of light arises, or if we fix our attention upon a single vibration of light, C, while we on the other hand give to the projectile, B, a speed equal to that of light, then we can conclude that B and C in their continued motion can always remain next to each other. Now if we watch all this, not from the movable compartment, but from a place on the earth, then we shall note the usual falling movement of object A, which shows us that we have to deal with a sphere of gravitation. The projectile B will, in a bent path, vary more and more from a horizontal straight line, and the light will do the same, because if we observe the movements from another standpoint this can have no effect upon the remaining next to each other of B and C.

DEFLECTION OF LIGHT
The bending of a ray of light thus described is much too light on the surface of the earth to be observed. But the attraction of gravitation exercised by the sun on its surface is, because of its great mass, more than twenty-seven times stronger, and a ray of light that goes close by the superficies of the sun must surely be noticeably bent. The rays of a star that are seen at a short distance from the edge of the sun will, going along the sun, deviate so much from the original direction that they strike the eye of an observer as if they came in a straight line from a point somewhat further removed than the real position of the star from the sun. It is at that point that we think we see the star; so here is a seeming displacement from the sun, which increases in the measure in which the star is observed closer to the sun. The Einstein theory teaches that the displacement is in inverse proportion to the apparent distance of the star from the centre of the sun, and that for a star just on its edge it will amount to 1'.75 (1.75 seconds). This is approximately the thousandth part of the apparent diameter of the sun.
Naturally, the phenomenon can only be observed when there is a total eclipse of the sun; then one can take photographs of neighboring stars and through comparing the plate with a picture of the same part of the heavens taken at a time when the sun was far removed from that point the sought-for movement to one side may become apparent.
Thus to put the Einstein theory to the test was the principal aim of the English expeditions sent out to observe the eclipse of May 29, one to Prince's Island, off the coast of Guinea, and the other to Sobral, Brazil. The first-named expedition's observers were Eddington and Cottingham, those of the second, Crommelin and Davidson. The conditions were especially favorable, for a very large number of bright stars were shown on the photographic plate; the observers at Sobral being particularly lucky in having good weather.
The total eclipse lasted five minutes, during four of which it was perfectly clear, so that good photographs could be taken. In the report issued regarding the results the following figures, which are the average of the measurements made from the seven plates, are given for the displacements of seven stars:
1''.02, 0''.92, 0''.84, 0''.58, 0''.54, 0''.36, 0''.24, whereas, according to the theory, the displacements should have amounted to: 0''.88, 0''.80, 0''.75, 0''.40, 0''.52, 0''.33, 0''.20.
If we consider that, according to the theory the displacements must be in inverse ratio to the distance from the centre of the sun, then we may deduce from each observed displacement how great the sideways movement for a star at the edge of the sun should have been. As the most probable result, therefore, the number 1''.98 was found from all the observations together. As the last of the displacements given above--i.e., 0''.24 is about one-eighth of this, we may say that the influence of the attraction of the sun upon light made itself felt upon the ray at a distance eight times removed from its centre.
The displacements calculated according to the theory are, just because of the way in which they are calculated, in inverse proportion to the distance to the centre. Now that the observed deviations also accord with the same rule, it follows that they are surely proportionate with the calculated displacements. The proportion of the
Continue reading on your phone by scaning this QR Code

 / 13
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.