Scientific American Supplement, No. 455, September 20, 1884 | Page 4

Not Available
377.07 | 4.4232 | Turpentine (C{10}H{16}) | 135.70 | 2.77 | 377.07 | 4.7003 | Dry air | 28.87 | 13.06 | -- | 1.0000 |
* * * * *

EMERALD-GREEN: ITS PROPERTIES AND MANUFACTURE.[1]
[Footnote 1: This substance is also known by the name Schweinfurt green.]
By ROBERT GALLOWAY, M.R.I.A.
The poisonous effects of wall-paper stained with emerald-green (aceto-arsenite of copper) appears to be a very favorite topic in many journals; it is continually reappearing in one form or another in different publications, especially medical ones; there has recently appeared a short reference to it under the title, "The Poisonous Effect of Wall-paper." As some years ago I became practically acquainted with its properties and manufacture, a few observations on these subjects may not be without interest.
In the paragraph referred to, it is stated that the poisonous effect of this pigment cannot be entirely due to its mere mechanical detachment from the paper. This writer therefore attributes the poisonous effects to the formation of the hydrogen compound of arsenic, viz., arseniureted hydrogen (AsH{3}); the hydrogen, for the formation of this compound, being generated, the writer thinks probable, "by the joint action of moisture and organic matters, viz., of substances used in fixing to walls papers impregnated with arsenic." In some of our chemical manuals, Dr. Kolbe's "Inorganic Chemistry," for example, it is also stated that arseniureted hydrogen is formed by the fermentation of the starch-paste employed for fastening the paper to the walls. It is perfectly obvious that the fermentation of the starch-paste must cease after a time, and therefore the poisonous effects of the paper must likewise cease if its injurious effects are caused by the fermentation. I do not think that arseniureted hydrogen could be formed under the conditions, for the oxygen compound of arsenic is in a state of combination, and the compound is in a dry solid state and not in solution and the affinities of the two elements--arsenic and hydrogen--for each other are so exceedingly weak that they cannot be made to unite directly except they are both set free at the same moment in presence of each other. Further, for the formation of this hydrogen compound by the fermentation of the starch, or by the growth of minute fungi, the entire compound must be broken up, and therefore the pigment would become discolored; but aceto-arsenite of copper
(3CuAs{2}O{4}+Cu(C{2}H{3}O{2}){2})
is a very stable compound, not readily undergoing decomposition, and is consequently a very permanent color. It has also been not unfrequently stated that the injurious effects of this pigment are due to the arsenious oxide volatilizing from the other constituents of the compound. This volatilization would likewise cause a breaking up of the entire compound, and would consequently cause a discoloration of the paper; but the volatilization of this arsenic compound is in every respect most improbable.
The injurious effects, if any, of this pigment must therefore be due to its mechanical detachment from the paper; but has it ever been conclusively proved that persons who inhabit rooms the wall-paper of which is stained with emerald-green suffer from arsenical poisoning? If it does occur, then the effects of what may be termed homoeopathic doses of this substance are totally different from the effects which arise from larger doses. During the packing of this substance in its dry state in the factory, clouds of its dust ascend in the air, and during the time I had to do with its manufacture I never heard that any of the factory hands suffered, nor did I suffer, from arsenical poisoning. If there is any abrasion of the skin the dust produces a sore, and also the delicate lining of the nostrils is apt to be affected. It is in this way it acts in large doses; I am therefore very skeptical as to its supposed poisonous effects when wall-paper is stained with it.
Different methods are given in works on chemistry for the manufacture of this pigment, but as they do not agree in every respect with the method which was followed in English color factories some years ago, it will be as well, for the full elucidation of the manufacture of this substance, to briefly recite some of these methods before describing the one that was, and probably is still, in use; and I will afterward describe a method which I invented, and which is practically superior to any other, both in the rapidity with which the color can be formed, and for producing it at a less cost.
It is stated in Watts' "Dictionary of Chemistry" that it is "prepared on a large scale by mixing arsenious acid with cupric acetate and water. Five parts of verdigris are made up to a thin paste, and added to a boiling solution of 4 parts or rather more of arsenious acid in 50 parts of water.
Continue reading on your phone by scaning this QR Code

 / 54
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.