Researches on Cellulose | Page 4

C.F. Cross
as the process in question.
The third division of our plan of arrangement comprised the synthetical derivatives of the celluloses, the sulphocarbonates first, as peculiarly characteristic, and then the esters, chiefly the acetates, benzoates, and nitrates. To these, investigators appear to have devoted but little attention, and the contribution of new matter in the present volume is mainly the result of our own researches. It will appear from this work that an exhaustive study of the cellulose esters promises to assist very definitely in the study of constitutional problems.
This brings us to the fourth and, to the theoretical chemist, the most important aspect of the subject, the problem of the actual molecular structure of the celluloses and compound celluloses. It is herein we are of opinion that the subject makes a 'law unto itself.' If the constitution of starch is shrouded in mystery and can only be vaguely expressed by generalising a complex mass of statistics of its successive hydrolyses, we can only still more vaguely guess at the distance which separates us from a mental picture of the cellulose unit. We endeavour to show by our later investigations that this problem merges into that of the actual structure of cellulose in the mass. It is definitely ascertained that a change in the molecule, or reacting unit, of a cellulose, proportionately affects the structural properties of the derived compounds, both sulphocarbonates and esters. This is at least an indication that the properties of the visible aggregates are directly related to the actual configuration of the chemical units. But it appears that we are barred from the present discussion of such a problem in absence of any theory of the solid state generally, but more particularly of those forms of matter which are grouped together as 'colloids.'
Cellulose is distinguished by its inherent constructive functions, and these functions take effect in the plastic or colloidal condition of the substance. These properties are equally conspicuous in the synthetical derivatives of the compound. Without reference, therefore, to further speculations, and not deterred by any apparent hopelessness of solving so large a problem, it is clear that we have to exhaust this field by exact measurements of all the constants which can be reduced to numerical expression. It is most likely that the issue may conflict with some of our current views of the molecular state which are largely drawn from a study of the relatively dissociated forms of matter. But such conflicts are only those of enlargement, and we anticipate that all chemists look for an enlargement of the molecular horizon precisely in those regions where the forces of cell-life manifest themselves.
The cellulose group has been further differentiated by later investigations. The fibrous celluloses of which the typical members receive important industrial applications, graduate by insensible stages into the hemicelluloses which may be regarded as a well-established sub-group. In considering their morphological and functional relationships it is evident that the graduation accords with their structure and the less permanent functions which they fulfil. They are aggregates of monoses of the various types, chiefly mannose, galactose, dextrose, &c., so far as they have been investigated.
Closely connected with this group are the constituents of the tissues of fungi. The recent researches of Winterstein and Gilson, which are noted in this present volume, have established definitely that they contain a nitrogenous group in intimate combination with a carbohydrate complex. This group is closely related to chitin, yielding glucosamin and acetic acid as products of ultimate hydrolysis. Special interest attaches to these residues, as they are in a sense intermediate products between the great groups of the carbohydrates and proteids (E. Fischer, Ber. 19, 1920), and their further investigation by physiological methods may be expected to disclose a genetic connection.
The lignocelluloses have been further investigated. Certain new types have been added, notably a soluble or 'pectic' form isolated from the juice of the white currant (p. 152), and the pith-like wood of the ?schynomene (p. 135).
Further researches on the typical fibrous lignocellulose have given us a basis for correcting some of the conclusions recorded in our original work, and a study of the esters has thrown some light on the constitution of the complex (p. 130).
Of importance also is the identification of the hydroxyfurfurals as constituents of the lignocelluloses generally, and the proof that the characteristic colour-reactions with phenols (phloroglucinol) may be ascribed to the presence of these compounds (p. 116).
The pectocelluloses have not been the subject of systematic chemical investigation, but the researches of Gilson ('La Cristallisation de la Cellulose et la Composition Chimique de la Membrane Cellulaire V��g��tale,' 'La Revue,' 'La Cellule,' i. ix.) are an important contribution to the natural history of cellulose, especially in relation to the 'pectic' constituents of the parenchymatous celluloses. Indirectly also the researches of Tollens on the 'pectins' have contributed to
Continue reading on your phone by scaning this QR Code

 / 68
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.