Piano Tuning | Page 5

J. Cree Fischer
key to the hammers which strike the strings, and the dampers which mute them.
The requisites of the action are as follows:
The keys must descend quickly and easily at the touch of the performer, giving quick response.
The weight of the hammer must be properly proportioned to the strings it causes to vibrate.
The hammer must rebound after striking the string. (Where the hammer remains against the string, thereby preventing vibration, the term "blocking" is used to designate the fault.)
The action must be capable of quick repetition; that is, when a key is struck a number of times in quick succession, it must respond perfectly every time.
After striking and rebounding from the string, the hammer should not fall to its lowest position where it rests when not in use, as this would prevent quick repetition. For catching the hammer at a short distance from the string, a felted piece of wood suspended on a wire, called the back check, rises when the key is depressed, and returns when the key is released, allowing the hammer to regain its resting position.
A damper, for stopping the tone of the string when a key is released, must leave the string just before the hammer strikes, and return the instant the key is released.
A means must be provided for releasing all the dampers from the strings at the will of the performer. The loud pedal, as it is called, but more properly, the damper pedal, accomplishes this end by raising the dampers from the strings.
In the square and the grand piano, the action is under the sound-board, while the strings are over it; so the hammers are made to strike through an opening in the sound-board. In the upright, the strings are between the action and the sound-board; so no opening is necessary in the latter.
The "trap-action" consists of the pedals and the parts which convey motion to the action proper.
QUESTIONS ON LESSON II.
1. What have been some of the salient obstacles necessary to overcome in producing the perfected piano?
2. Of what use are the dampers? Explain their mechanical action.
3. Mention several of the qualities necessary to a good action.
4. Describe the building of an upright piano.
5. Contrast the musical capacity and peculiar characteristics of the piano with those of the organ, which has the same keyboard.

LESSON III.
TECHNICAL NAMES AND USES OF THE PARTS OF THE UPRIGHT PIANO ACTION.
In the practice of piano tuning, the first thing is to ascertain if the action is in first-class condition. The tuner must be able to detect, locate and correct the slightest defect in any portion of the instrument. Any regulating or repairing of the action should be attended to before tuning the instrument; the latter should be the final operation. As a thorough knowledge of regulating and repairing is practically indispensable to the professional tuner, the author has spared neither means, labor nor research to make this part of the lessons very complete, and feels sure that it will meet with the hearty approval of most, if not all, students. The piano tuner who knows nothing of regulating and repairing will miss many an opportunity to earn extra money.
The illustration accompanying this lesson is from a Wessell, Nickel and Gross Upright action. This firm, whose product is considered the acme of perfection, makes nothing but actions. Most manufacturers of pianos, of the present day, build the wooden frame, the sound-board and the case only; the action, metal plate, strings, tuning-pins, etc., being purchased from different firms who make a specialty of the manufacture of these parts. A few concerns, however, make every piece that enters into the composition of the instruments bearing their names.
[Illustration]
Ky, is the Key in its resting position.
c, wherever found, represents a cushion of felt or soft leather upon which the different parts of the action rest or come in contact with each other. Their purpose, as is readily seen, is that of rendering the action noiseless and easy of operation.
Bnc R, shows the end of the balance rail, extending the entire length of the keyboard.
B P, is the balance pin. This is a perfectly round pin driven firmly in the balance rail. The bottom of the hole in the key fits closely around the balance pin; at the top, it is the shape of a mortise, parallel with the key, which allows the key to move only in the direction intended. The mortise in the wooden cap on top of the key at this point is lined with bushing cloth which holds the key in position laterally, and prevents looseness and rattling, yet allows the key to move easily.
L, is the lead put in this portion of the key to balance it, and to insure uniformity of "touch," and quick and certain return of key to its rest position. As there is more or less
Continue reading on your phone by scaning this QR Code

 / 52
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.