History of Astronomy | Page 4

George Forbes
without being seen if it was always the same sun. It was a great step to suppose the earth to be spherical, and to ascribe the diurnal motions to its rotation. Probably the greatest step ever made in astronomical theory was the placing of the sun, moon, and planets at different distances from the earth instead of having them stuck on the vault of heaven. It was a transition from "flatland" to a space of three dimensions.
Great progress was made when systematic observations began, such as following the motion of the moon and planets among the stars, and the inferred motion of the sun among the stars, by observing their _heliacal risings_--i.e., the times of year when a star would first be seen to rise at sunrise, and when it could last be seen to rise at sunset. The grouping of the stars into constellations and recording their places was a useful observation. The theoretical prediction of eclipses of the sun and moon, and of the motions of the planets among the stars, became later the highest goal in astronomy.
To not one of the above important steps in the progress of astronomy can we assign the author with certainty. Probably many of them were independently taken by Chinese, Indian, Persian, Tartar, Egyptian, Babylonian, Assyrian, Phoenician, and Greek astronomers. And we have not a particle of information about the discoveries, which may have been great, by other peoples--by the Druids, the Mexicans, and the Peruvians, for example.
We do know this, that all nations required to have a calendar. The solar year, the lunar month, and the day were the units, and it is owing to their incommensurability that we find so many calendars proposed and in use at different times. The only object to be attained by comparing the chronologies of ancient races is to fix the actual dates of observations recorded, and this is not a part of a history of astronomy.
In conclusion, let us bear in mind the limited point of view of the ancients when we try to estimate their merit. Let us remember that the first astronomy was of two dimensions; the second astronomy was of three dimensions, but still purely geometrical. Since Kepler's day we have had a dynamical astronomy.
FOOTNOTES:
[1] Trans. R. S. E., xxiii. 1864, p. 499, On Sun Spots, etc., by B. Stewart. Also Trans. R. S. 1860-70. Also Prof. Ernest Brown, in _R. A. S. Monthly Notices_, 1900.
[2] _R. A. S. Monthly Notices_, Sup.; 1905.
[Illustration: CHALD?AN BAKED BRICK OR TABLET, Obverse and reverse sides, Containing record of solar eclipse, 1062 B.C., used lately by Cowell for rendering the lunar theory more accurate than was possible by finest modern observations. (British Museum collection, No. 35908.)]
[3] _R. A. S. Monthly Notices_, vol. x., p. 65.
[4] R. S. E. Proc., vol. x., 1880.

2. ANCIENT ASTRONOMY--THE CHINESE AND CHALD?ANS.
The last section must have made clear the difficulties the way of assigning to the ancient nations their proper place in the development of primitive notions about astronomy. The fact that some alleged observations date back to a period before the Chinese had invented the art of writing leads immediately to the question how far tradition can be trusted.
Our first detailed knowledge was gathered in the far East by travellers, and by the Jesuit priests, and was published in the eighteenth century. The Asiatic Society of Bengal contributed translations of Brahmin literature. The two principal sources of knowledge about Chinese astronomy were supplied, first by Father Souciet, who in 1729 published _Observations Astronomical, Geographical, Chronological, and Physical_, drawn from ancient Chinese books; and later by Father Moyriac-de-Mailla, who in 1777-1785 published _Annals of the Chinese Empire, translated from Tong-Kien-Kang-Mou_.
Bailly, in his Astronomie Ancienne (1781), drew, from these and other sources, the conclusion that all we know of the astronomical learning of the Chinese, Indians, Chald?ans, Assyrians, and Egyptians is but the remnant of a far more complete astronomy of which no trace can be found.
Delambre, in his _Histoire de l'Astronomie Ancienne_ (1817), ridicules the opinion of Bailly, and considers that the progress made by all of these nations is insignificant.
It will be well now to give an idea of some of the astronomy of the ancients not yet entirely discredited. China and Babylon may be taken as typical examples.
China.--It would appear that Fohi, the first emperor, reigned about 2952 B.C., and shortly afterwards Yu-Chi made a sphere to represent the motions of the celestial bodies. It is also mentioned, in the book called Chu-King, supposed to have been written in 2205 B.C., that a similar sphere was made in the time of Yao (2357 B.C.).[1] It is said that the Emperor Chueni (2513 B.C.) saw five planets in conjunction the same day that the sun and moon were in conjunction. This is discussed by Father Martin (MSS. of De
Continue reading on your phone by scaning this QR Code

 / 56
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.