Zen and the Art of Internet | Page 5

Brendan P. Kehoe
a unique address, {At least one address, possibly two or even three---but we won't go into that.} called its Internet number or IP Address. It's actually a 32-bit number, but is most commonly represented as four numbers joined by periods (.), like 147.31.254.130. This is sometimes also called a dotted quad; there are literally thousands of different possible dotted quads. The ARPAnet (the mother to today's Internet) originally only had the capacity to have up to 256 systems on it because of the way each system was addressed. In the early eighties, it became clear that things would fast outgrow such a small limit; the 32-bit addressing method was born, freeing thousands of host numbers.
Each piece of an Internet address (like 192) is called an ``octet,'' representing one of four sets of eight bits. The first two or three pieces (e.g. 192.55.239) represent the network that a system is on, called its subnet. For example, all of the computers for Wesleyan University are in the subnet 129.133. They can have numbers like 129.133.10.10, 129.133.230.19, up to 65 thousand possible combinations (possible computers).
IP addresses and domain names aren't assigned arbitrarily---that would lead to unbelievable confusion. An application must be filed with the Network Information Center (NIC), either electronically (to [email protected]) or via regular mail.
Resolving Names and Numbers
Ok, computers can be referred to by either their FQDN or their Internet address. How can one user be expected to remember them all?
They aren't. The Internet is designed so that one can use either method. Since humans find it much more natural to deal with words than numbers in most cases, the FQDN for each host is mapped to its Internet number. Each domain is served by a computer within that domain, which provides all of the necessary information to go from a domain name to an IP address, and vice-versa. For example, when someone refers to foosun.bar.com, the resolver knows that it should ask the system foovax.bar.com about systems in bar.com. It asks what Internet address foosun.bar.com has; if the name foosun.bar.com really exists, foovax will send back its number. All of this ``magic'' happens behind the scenes.
Rarely will a user have to remember the Internet number of a site (although often you'll catch yourself remembering an apparently obscure number, simply because you've accessed the system frequently). However, you will remember a substantial number of FQDNs. It will eventually reach a point when you are able to make a reasonably accurate guess at what domain name a certain college, university, or company might have, given just their name.
The Networks
Internet The Internet is a large ``network of networks.'' There is no one network known as The Internet; rather, regional nets like SuraNet, PrepNet, NearNet, et al., are all inter-connected (nay, ``inter-networked'') together into one great living thing, communicating at amazing speeds with the TCP/IP protocol. All activity takes place in ``real-time.''
UUCP The UUCP network is a loose association of systems all communicating with the UUCP protocol. (UUCP stands for `Unix-to-Unix Copy Program'.) It's based on two systems connecting to each other at specified intervals, called polling, and executing any work scheduled for either of them. Historically most UUCP was done with Unix equipment, although the software's since been implemented on other platforms (e.g. VMS). For example, the system oregano polls the system basil once every two hours. If there's any mail waiting for oregano, basil will send it at that time; likewise, oregano will at that time send any jobs waiting for basil.
BITNET BITNET (the ``Because It's Time Network'') is comprised of systems connected by point-to-point links, all running the NJE protocol. It's continued to grow, but has found itself suffering at the hands of the falling costs of Internet connections. Also, a number of mail gateways are in place to reach users on other networks.
The Physical Connection
The actual connections between the various networks take a variety of forms. The most prevalent for Internet links are 56k leased lines (dedicated telephone lines carrying 56kilobit-per-second connections) and T1 links (special phone lines with 1Mbps connections). Also installed are T3 links, acting as backbones between major locations to carry a massive 45Mbps load of traffic.
These links are paid for by each institution to a local carrier (for example, Bell Atlantic owns PrepNet, the main provider in Pennsylvania). Also available are SLIP connections, which carry Internet traffic (packets) over high-speed modems.
UUCP links are made with modems (for the most part), that run from 1200 baud all the way up to as high as 38.4Kbps. As was mentioned in The Networks, the connections are of the store-and-forward variety. Also in use are Internet-based UUCP links (as if things weren't already confusing enough!). The systems do their UUCP traffic over TCP/IP connections, which give the UUCP-based network some blindingly fast ``hops,'' resulting in better connectivity for the network as
Continue reading on your phone by scaning this QR Code

 / 33
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.