powers often goes with hypertrophy of these movements, as seen in head-beaters (as if, just as nature impels those partially blind to rub the eyes for "light-hunger," so it prompts the feeble-minded to strike the head for cerebrations), rockers, rackers, shakers, biters, etc. Movements often pass to fixed attitudes and postures of limbs or body, disturbing the normal balance between flexors and extensors, the significance of which as nerve signs or exponents of habitual brain states and tensions Warner has so admirably shown.
Abundance and vigor of automatic movements are desirable, and even a considerable degree of restlessness is a good sign in young children. Many of what are now often called nerve signs and even choreic symptoms, the fidgetiness in school on cloudy days and often after a vacation, the motor superfluities of awkwardness, embarrassment, extreme effort, excitement, fatigue, sleepiness, etc., are simply the forms in which we receive the full momentum of heredity and mark a natural richness of the raw material of intellect, feeling, and especially of will. Hence they must be abundant. All parts should act in all possible ways at first and untrammeled by the activity of all other parts and functions. Some of these activities are more essential for growth in size than are later and more conscious movements. Here as everywhere the rule holds that powers themselves must be unfolded before the ability to check or even to use them can develop. All movements arising from spontaneous activity of nerve cells or centers must be made in order even to avoid the atrophy of disease. Not only so, but this purer kind of innateness must often be helped out to some extent in some children by stimulating reflexes; a rich and wide repertory of sensation must be made familiar; more or less and very guarded, watched and limited experiences of hunger, thirst, cold, heat, tastes, sounds, smells, colors, brightnesses, tactile irritations, and perhaps even occasional tickling and pain to play off the vastly complex function of laughing, crying, etc., may in some cases be judicious. Conscious and unconscious imitation or repetition of every sort of copy may also help to establish the immediate and low-level connection between afferent and efferent processes that brings the organism into direct rapport and harmony with the whole world of sense. Perhaps the more rankly and independently they are developed to full functional integrity, each in its season, if we only knew that season, the better. Premature control by higher centers, or co?rdination into higher compounds of habits and ordered serial activities, is repressive and wasteful, and the mature will of which they are components, or which must at least domesticate them, is stronger and more forcible if this serial stage is not unduly abridged.
But, secondly, many, if not most, of these activities when developed a little, group after group, as they arise, must be controlled, checked, and organized into higher and often more serial compounds. The inhibiting functions are at first hard. In trying to sit still the child sets its teeth, holds the breath, clenches its fists and perhaps makes every muscle tense with a great effort that very soon exhausts. This repressive function is probably not worked from special nervous centers, nor can we speak with confidence of collisions with "sums of arrest" in a sense analogous to that of Herbart, or of stimuli that normally cause catabolic molecular processes in the cell, being mysteriously diverted to produce increased instability or anabolic lability in the sense of Wundt's Mechanik der Nerven. The concept now suggested by many facts is that inhibition is irradiation or long circuiting to higher and more complex brain areas, so that the energy, whether spontaneous or reflex, is diverted to be used elsewhere. These combinations are of a higher order, more remote from reflex action, and modified by some Jacksonian third level.[9] Action is now not from independent centers, but these are slowly associated, so that excitation may flow off from one point to any other and any reaction may result from any stimulus.
The more unified the brain the less it suffers from localization, and the lower is the level to which any one function can exhaust the whole. The tendency of each group of cells to discharge or overflow into those of lower tension than themselves increases as correspondence in time and space widens. The more one of a number of activities gains in power to draw on all the brain, or the more readily the active parts are fed at cost of the resting parts, the less is rest to be found in change from one of these activities to another, and the less do concentration and specialization prove to be dangerous. Before, the aim was to wake all parts to function; now it is to connect them. Intensity of
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.