Youth: Its Education, Regimen, and Hygiene | Page 5

G. Stanley Hall
als Erzicher";[1] that history is consciously willed movements, with Bluntschli; or that we could form no conception of force or energy in the world but for our own muscular effort; to hold that most thought involves change of muscle tension as more or less integral to it--all this shows how we have modified the antique Ciceronian conception vivere est cogitari, [To live is to think] to vivere est velle, [To live is to will] and gives us a new sense of the importance of muscular development and regimen.[2]
Modern psychology thus sees in muscles organs of expression for all efferent processes. Beyond all their demonstrable functions, every change of attention and of psychic states generally plays upon them unconsciously, modifying their tension in subtle ways so that they may be called organs of thought and feeling as well as of will, in which some now see the true Kantian thing-in-itself the real substance of the world, in the anthropomorphism of force. Habits even determine the deeper strata of belief; thought is repressed action; and deeds, not words, are the language of complete men. The motor areas are closely related and largely identical with the psychic, and muscle culture develops brain-centers as nothing else yet demonstrably does. Muscles are the vehicles of habituation, imitation, obedience, character, and even of manners and customs. For the young, motor education is cardinal, and is now coming to due recognition; and, for all, education is incomplete without a motor side. Skill, endurance, and perseverance may almost be called muscular virtues; and fatigue, velleity, caprice, ennui, restlessness, lack of control and poise, muscular faults.
To understand the momentous changes of motor functions that characterize adolescence we must consider other than the measurable aspects of the subject. Perhaps the best scale on which to measure all normal growth of muscle structure and functions is found in the progress from fundamental to accessory. The former designates the muscles and movements of the trunk and large joints, neck, back, hips, shoulders, knees, and elbows, sometimes called central, and which in general man has in common with the higher and larger animals. Their activities are few, mostly simultaneous, alternating and rhythmic, as of the legs in walking, and predominate in hard-working men and women with little culture or intelligence, and often in idiots. The latter or accessory movements are those of the hand, tongue, face, and articulatory organs, and these may be connected into a long and greatly diversified series, as those used in writing, talking, piano-playing. They are represented by smaller and more numerous muscles, whose functions develop later in life and represent a higher standpoint of evolution. These smaller muscles for finer movements come into function later and are chiefly associated with psychic activity, which plays upon them by incessantly changing their tensions, if not causing actual movement. It is these that are so liable to disorder in the many automatisms and choreic tics we see in school children, especially if excited or fatigued. General paralysis usually begins in the higher levels by breaking these down, so that the first symptom of its insidious and never interrupted progress is inability to execute the more exact and delicate movements of tongue or hand, or both. Starting with the latest evolutionary level, it is a devolution that may work downward till very many of the fundamental activities are lost before death.
Nothing better illustrates this distinction than the difference between the fore foot of animals and the human hand. The first begins as a fin or paddle or is armed with a hoof, and is used solely for locomotion. Some carnivora with claws use the fore limb also for holding well as tearing, and others for digging. Arboreal life seems to have almost created the simian hand and to have wrought a revolution in the form and use of the forearm and its accessory organs, the fingers. Apes and other tree-climbing creatures must not only adjust their prehensile organ to a wide variety of distances and sizes of branches, but must use the hands more or less freely for picking, transporting, and eating fruit; and this has probably been a prime factor in lifting man to the erect position, without which human intelligence as we know it could have hardly been possible. "When we attempt to measure the gap between man and the lower animals in terms of the form of movement, the wonder is no less great than when we use the term of mentality."[3] The degree of approximation to human intelligence in anthropoid animals follows very closely the degree of approximation to human movements.
The gradual acquirement of the erect position by the human infant admirably repeats this long phylogenetic evolution.[4] At first the limbs are of almost no use in locomotion, but the fundamental trunk muscles with those that move the
Continue reading on your phone by scaning this QR Code

 / 157
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.