Transactions of the American Society of Civil Engineers, vol. LXVIII, Sept. 1910 | Page 2

F. Lavis
from the shaft, was self-supporting, and did not require timbering, which, of course, had been necessary up to this point.
A full face of sandstone continued to Station 274 + 60, 940 ft. from the shaft, where the main overlying body of trap appeared in the heading. The full face of the tunnel was wholly in trap at about Station 275 + 30, and continued in this through to the Western Portal, where the top of the trap was slightly below the roof of the tunnel, with hardpan above. The contact between the sandstone and the overlying trap was very clearly defined, the angle of dip being approximately 17�� 40' toward the northwest.
The sandstone and trap are of the Triassic Period, and the trap of this vicinity is more particularly classified as diabase.
The character of the trap rock varied considerably. At the contact, at Station 275, and for a distance of approximately 200 ft. west, corresponding to a thickness of about 60 ft. measured at right angles to the line of the contact, a very hard, fine-grained trap, almost black in color, was found, having a specific gravity of 2.98, and weighing 186 lb. per cu. ft. The hardness of this rock is attested by the fact that the average time required to drill a 10-ft. hole in the heading, with a No. 34 slugger drill, with air at 90 lb. pressure, was almost 10 hours. The specific gravity of this rock is not as high as that of some other specimens of trap tested, which were much more easily drilled. This rock was very blocky, causing the drills to bind and stick badly, and, when being shoveled back from the heading, as it fell it sounded very much as though it were broken glass.
The remainder of the trap varied from this, through several changes of texture and color, due to different amounts of quartz and feldspar, to a very coarse-grained rock, closely resembling granite of a light color, though quite hard. The speed of drilling the normal trap in the heading was approximately 20 to 25 min. per ft., as compared with the 60 min. per ft. noted above, the larger amounts of quartz and feldspar accounting for the greater brittleness and consequently the easier drilling qualities of the rock. The normal trap in these tunnels has a specific gravity varying from 2.85 to 3.04, and weighs from 179 to 190 lb. per cu. ft.
The temperature of the tunnels, at points 1,000 ft. from the portals at both ends, remained nearly stationary, and approximately between 50�� in winter and 60�� in summer, up to the time the headings were holed through, being practically unaffected by daily changes in the temperature outside. At the western end, after the connection with the Central Shaft headings was made, there was almost always a current of air from the portal to the shaft, and ascending through the latter. This tended to make the temperature in this part of the tunnel correspond more nearly with the outside temperature; in fact, the variation was seldom more than 5�� Fahr.
Timbering.--These tunnels have been excavated entirely by the center top heading method, almost invariably used in the United States. Timbering, where required, was of the usual segmental form with outside lagging, as shown in several of the photographs. In a few places it was necessary to hold the ground as the work progressed, and, in such cases, crown bars were used in the headings.
There was some little trouble at the Western Portal, where the top of the rock was very near the roof of the tunnel, as shown by Fig. 1, Plate XXI. A side heading was driven at the level of the springing line until a point was reached where the roof was self-supporting, and the timbering was brought out to the face of the portal from that point.
[Illustration: Plate XXII. Fig. 1: K 26. P.R.R. Tunnels, N. R. D. Sect. K. (Bergen Hill Tunnels,) Weehawken Shaft. Scaffold car in South Tunnel at Sta. 267+60. Jan. 11, 06. Fig. 2: K 31. P.R.R. Tunnels, N. R. Div. Sect. K. (Bergen Hill Tunnels) Weehawken Shaft. Headhouse at ? elevator frame work, looking West. Oct. 17, 06. Fig. 3.--Round Holes in Concrete Forms. Fig. 4.--Round Holes in Concrete Forms Completed.]
Drilling.--Where no timbering was required, several different methods were used in drilling and excavating the solid rock, though in all cases a center top heading was driven. The four diagrams, Figs. 1, 2, 3, and 4, give typical examples of these methods and show, in the order of their numbers, the general tendency of the development from a small heading kept some distance ahead of the bench, to a large heading with the bench kept close to it. The notes on each diagram give the general details of the quantity
Continue reading on your phone by scaning this QR Code

 / 36
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.