Transactions of the American Society of Civil Engineers, Vol. LXX, Dec. 1910 | Page 2

Beverly S. Randolph
tortuous, so that it is quite probable that the resistance assumed in the calculation is far below the actual. Items 15 and 17 are both high. To account for this, it is to be noted that this road has been recently completed, regardless of cost in the matter of both track and rolling stock, and doubtless represents the highest development of railroad practice. Its rolling stock is all new, and is probably in better condition to offer low resistance than it will ever be again, and there were no "foreign" cars in the trains considered. The train resistance, therefore, may be naturally assumed to be much less than that of roads hauling all classes of cars, many of which are barely good enough to pass inspection. As the grades are light in both cases, this feature of train resistance is larger than in items including heavier grades. Attention should be called to the fact that a line connecting the two points representing these items on Fig. 1 would make only a small angle with the sketched curve, and would be practically parallel to a similar line connecting the points represented by Items 13 and 16. There is, therefore, an agreement of ratios, which is all that needs consideration in this discussion.
[Illustration: FIG. 1.--DIAGRAM SHOWING PERCENTAGE OF WEIGHT ON DRIVERS WHICH IS UTILIZED IN TRACTION ON GRADES OF VARIOUS LENGTHS]
Wellington, in his monumental work on railway location, presents a table of this character. The percentages of weight on the drivers which is utilized in draft show the greatest irregularity. He does not give the length of the grades considered, so that it is impossible to say how far the introduction of this feature would have contributed to bring order out of the chaos. In his discussion of the table he admits the unsatisfactory character of the results, and finally decides on 25% as a rough average, "very approximately the safe operating load in regular service." He further states that a number of results, which he omits for want of space, exceeds 33 per cent. The highest shown in Table 1 will be found in Item 1 (0.06 mile, 0.066 grade), showing 33 per cent. There is no momentum effect here, as the grade is a short incline extending down to the river, and the start is necessarily a "dead" one. The reports of Item 3, which shows 31%, and Item 5, which shows 27%, state specifically that the locomotives will stop and start the loads given at any point on the grade.
The results of a series of experiments reported by Mr. A. C. Dennis in his paper, "Virtual Grades for Freight Trains," previously referred to, indicate a utilization of somewhat more than 23%, decreasing with the speed.
All this indicates that the general failure of locomotives to utilize more than from 16 to 18% on long grades, as shown by Table 1, can only be due to the failure of the boilers to supply the necessary steam. While the higher percentage shown for the shorter grades may be ascribed largely to momentum present when the foot of the grade is reached, the energy due to stored heat is responsible for a large portion of it.
When a locomotive has been standing still, or running with the steam consumption materially below the production, the pressure accumulates until it reaches the point at which the safety valve is "set." This means that the entire machine is heated to a temperature sufficient to maintain this pressure in the boiler. When the steam consumption begins to exceed the production, this temperature is reduced to a point where the consumption and production balance.
The heat represented by this difference in temperature has passed into the steam used, thus adding to the energy supplied by the combustion going on in the furnace. The engines, therefore, are able to do considerably more work during the time the pressure is falling than they can do after the fall has ceased.
The curve in Fig. 1 would indicate that the energy derived from the two sources just discussed is practically dissipated at 15 miles, though the position of the points representing Items 16, 18, 19, 20, and 21 would indicate that this takes place more frequently between 10 and 12 miles. From this point onward the performance depends on the efficiency of the steam production, which does not appear to be able to utilize more than 16% of the weight on the drivers. The diagrams presented by Mr. Dennis in his paper on virtual grades, and by John A. Fulton, M. Am. Soc. C. E., in his discussion of that paper, indicate that similar results would be shown were they extended to include the distance named.
From this it would appear that a locomotive is capable of hauling a larger train on grades less than
Continue reading on your phone by scaning this QR Code

 / 11
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.