in this form the expression will be constant and everything else variable.
3.313 Thus an expression is presented by means of a variable whose values are the propositions that contain the expression. (In the limiting case the variable becomes a constant, the expression becomes a proposition.) I call such a variable a 'propositional variable'.
3.314 An expression has meaning only in a proposition. All variables can be construed as propositional variables. (Even variable names.)
3.315 If we turn a constituent of a proposition into a variable, there is a class of propositions all of which are values of the resulting variable proposition. In general, this class too will be dependent on the meaning that our arbitrary conventions have given to parts of the original proposition. But if all the signs in it that have arbitrarily determined meanings are turned into variables, we shall still get a class of this kind. This one, however, is not dependent on any convention, but solely on the nature of the pro position. It corresponds to a logical form--a logical prototype.
3.316 What values a propositional variable may take is something that is stipulated. The stipulation of values is the variable.
3.317 To stipulate values for a propositional variable is to give the propositions whose common characteristic the variable is. The stipulation is a description of those propositions. The stipulation will therefore be concerned only with symbols, not with their meaning. And the only thing essential to the stipulation is that it is merely a description of symbols and states nothing about what is signified. How the description of the propositions is produced is not essential.
3.318 Like Frege and Russell I construe a proposition as a function of the expressions contained in it.
3.32 A sign is what can be perceived of a symbol.
3.321 So one and the same sign (written or spoken, etc.) can be common to two different symbols--in which case they will signify in different ways.
3.322 Our use of the same sign to signify two different objects can never indicate a common characteristic of the two, if we use it with two different modes of signification. For the sign, of course, is arbitrary. So we could choose two different signs instead, and then what would be left in common on the signifying side?
3.323 In everyday language it very frequently happens that the same word has different modes of signification--and so belongs to different symbols-- or that two words that have different modes of signification are employed in propositions in what is superficially the same way. Thus the word 'is' figures as the copula, as a sign for identity, and as an expression for existence; 'exist' figures as an intransitive verb like 'go', and 'identical' as an adjective; we speak of something, but also of something's happening. (In the proposition, 'Green is green'--where the first word is the proper name of a person and the last an adjective--these words do not merely have different meanings: they are different symbols.)
3.324 In this way the most fundamental confusions are easily produced (the whole of philosophy is full of them).
3.325 In order to avoid such errors we must make use of a sign-language that excludes them by not using the same sign for different symbols and by not using in a superficially similar way signs that have different modes of signification: that is to say, a sign-language that is governed by logical grammar--by logical syntax. (The conceptual notation of Frege and Russell is such a language, though, it is true, it fails to exclude all mistakes.)
3.326 In order to recognize a symbol by its sign we must observe how it is used with a sense.
3.327 A sign does not determine a logical form unless it is taken together with its logico-syntactical employment.
3.328 If a sign is useless, it is meaningless. That is the point of Occam's maxim. (If everything behaves as if a sign had meaning, then it does have meaning.)
3.33 In logical syntax the meaning of a sign should never play a role. It must be possible to establish logical syntax without mentioning the meaning of a sign: only the description of expressions may be presupposed.
3.331 From this observation we turn to Russell's 'theory of types'. It can be seen that Russell must be wrong, because he had to mention the meaning of signs when establishing the rules for them.
3.332 No proposition can make a statement about itself, because a propositional sign cannot be contained in itself (that is the whole of the 'theory of types').
3.333 The reason why a function cannot be its own argument is that the sign for a function already contains the prototype of its argument, and it cannot contain itself. For let us suppose that the function F(fx) could be its own argument: in that case there would be a proposition 'F(F(fx))', in which the outer
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.