with wonder at the seeming contrast between the ancient and the present order of nature. The elemental forces seemed to have been grander and more energetic in primeval times. Upheaved and contorted, rifted and fissured, pierced by dykes of molten matter or worn away over vast areas by aqueous action, the older rocks appeared to bear witness to a state of things far different from that exhibited by the peaceful epoch on which the lot of man has fallen.
But by degrees thoughtful students of geology have been led to perceive that the earliest efforts of nature have been by no means the grandest. Alps and Andes are children of yesterday when compared with Snowdon and the Cumberland hills; and the so-called glacial epoch--that in which perhaps the most extensive physical changes of which any record remaining occurred--is the last and the newest of the revolutions of the globe. And in proportion as physical geography--which is the geology of our own epoch--has grown into a science, and the present order of nature has been ransacked to find what, 'hibernice', we may call precedents for the phenomena of the past, so the apparent necessity of supposing the past to be widely different from the present has diminished.
The transporting power of the greatest deluge which can be imagined sinks into insignificance beside that of the slowly floating, slowly melting iceberg, or the glacier creeping along at its snail's pace of a yard a day. The study of the deltas of the Nile, the Ganges, and the Mississippi has taught us how slow is the wearing action of water, how vast its effects when time is allowed for its operation. The reefs of the Pacific, the deep-sea soundings of the Atlantic, show that it is to the slow-growing coral and to the imperceptible animalcule, which lives its brief space and then adds its tiny shell to the muddy cairn left by its brethren and ancestors, that we must look as the agents in the formation of limestone and chalk, and not to hypothetical oceans saturated with calcareous salts and suddenly depositing them.
And while the inquirer has thus learnt that existing forces--'give them time'--are competent to produce all the physical phenomena we meet with in the rocks, so, on the other side, the study of the marks left in the ancient strata by past physical actions shows that these were similar to those which now obtain. Ancient beaches are met with whose pebbles are like those found on modern shores; the hardened sea-sands of the oldest epochs show ripple-marks, such as may now be found on every sandy coast; nay, more, the pits left by ancient rain-drops prove that even in the very earliest ages, the "bow in the clouds" must have adorned the palaeozoic firmament. So that if we could reverse the legend of the Seven Sleepers,--if we could sleep back through the past, and awake a million ages before our own epoch, in the midst of the earliest geologic times,--there is no reason to believe that sea, or sky, or the aspect of the land would warn us of the marvellous retrospection.
Such are the beliefs which modern physical geologists hold, or, at any rate, tend towards holding. But, in so doing, it is obvious that they by no means prejudge the question, as to what the physical condition of the globe may have been before our chapters of its history begin, in what may be called (with that licence which is implied in the often-used term "prehistoric epoch") "pre-geologic time." The views indicated, in fact, are not only quite consistent with the hypothesis, that, in the still earlier period referred to, the condition of our world was very different; but they may be held by some to necessitate that hypothesis. The physical philosopher who is accurately acquainted with the velocity of a cannon-ball, and the precise character of the line which it traverses for a yard of its course, is necessitated by what he knows of the laws of nature to conclude that it came from a certain spot, whence it was impelled by a certain force, and that it has followed a certain trajectory. In like manner, the student of physical geology, who fully believes in the uniformity of the general condition of the earth through geologic time, may feel compelled by what he knows of causation, and by the general analogy of nature, to suppose that our solar system was once a nebulous mass; that it gradually condensed, that it broke up into that wonderful group of harmoniously rolling balls we call planets and satellites, and that then each of these underwent its appointed metamorphosis, until at last our own share of the cosmic vapour passed into that condition in which we first meet with definite records of its state, and
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.