steel to an amount at least five times the sulphur content.
PHOSPHORUS is an element (symbol P) which enters the metal from the ore. It remains in the steel when made by the so-called acid process, but it can be easily eliminated down to 0.06 per cent in the basic process. In fact the discovery of the basic process was necessary before the huge iron deposits of Belgium and the Franco-German border could be used. These ores contain several per cent phosphorus, and made a very brittle steel ("cold short") until basic furnaces were used. Basic furnaces allow the formation of a slag high in lime, which takes practically all the phosphorus out of the metal. Not only is the resulting metal usable, but the slag makes a very excellent fertilizer, and is in good demand.
SILICON is a very widespread element (symbol Si), being an essential constituent of nearly all the rocks of the earth. It is similar to carbon in many of its chemical properties; for instance it burns very readily in oxygen, and consequently native silicon is unknown--it is always found in combination with one or more other elements. When it bums, each atom of silicon unites with two atoms of oxygen to form a compound known to chemists as silica (SiO2), and to the small boy as "sand" and "agate."
Iron ore (an oxide of iron) contains more or less sand and dirt mixed in it when it is mined, and not only the iron oxide but also some of the silicon oxide is robbed of its oxygen by the smelting process. Pig iron--the product of the blast furnace--therefore contains from 1 to 3 per cent of silicon, and some silicon remains in the metal after it has been purified and converted into steel.
However, silicon, as noted above, burns very readily in oxygen, and this property is of good use in steel making. At the end of the steel-making process the metal contains more or less oxygen, which must be removed. This is sometimes done (especially in the so-called acid process) by adding a small amount of silicon to the hot metal just before it leaves the furnace, and stirring it in. It thereupon abstracts oxygen from the metal wherever it finds it, changing to silica (SiO2) which rises and floats on the surface of the cleaned metal. Most of the silicon remaining in the metal is an excess over that which is required to remove the dangerous oxygen, and the final analysis of many steels show enough silicon (from 0.20 to 0.40) to make sure that this step in the manufacture has been properly done.
MANGANESE is a metal much like iron. Its chemical symbol is Mn. It is somewhat more active than iron in many chemical changes--notably it has what is apparently a stronger attraction for oxygen and sulphur than has iron. Therefore the metal is used (especially in the so-called basic process) to free the molten steel of oxygen, acting in a manner similar to silicon, as explained above. The compound of manganese and oxygen is readily eliminated from the metal. Sufficient excess of elemental manganese should remain so that the purchaser may be sure that the iron has been properly "deoxidized," and to render harmless the traces of sulphur present. No damage is done by the presence of a little manganese in steel, quite the reverse. Consequently it is common to find steels containing from 0.3 to 1.5 per cent.
ALLOYING ELEMENTS.--Commercial steels of even the simplest types are therefore primarily alloys of iron and carbon. Impurities and their "remedies" are always present: sulphur, phosphorus, silicon and manganese--to say nothing of oxygen, nitrogen and carbon oxide gases, about which we know very little. It has been found that other metals, if added to well-made steel, produce definite improvements in certain directions, and these "alloy steels" have found much use in the last ten years. Alloy steels, in addition to the above-mentioned elements, may commonly contain one or more of the following, in varying amounts: Nickel (Ni), Chromium (Cr), Vanadium (Va), Tungsten (W), Molybdenum (Mo). These steels will be discussed at more length in Chapters III and IV.
PROPERTIES OF STEEL
Steels are known by certain tests. Early tests were more or less crude, and depended upon the ability of the workman to judge the "grain" exhibited by a freshly broken piece of steel. The cold-bend test was also very useful--a small bar was bent flat upon itself, and the stretched fibers examined for any sign of break. Harder stiff steels were supported at the ends and the amount of central load they would support before fracture, or the amount of permanent set they would acquire at a given load noted. Files were also used to test the hardness of very hard steel.
These tests are still used to a considerable
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.