Working of Steel, by Fred H. Colvin and A. Juthe
Project Gutenberg's The Working of Steel, by Fred H. Colvin and A. Juthe This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org
Title: The Working of Steel Annealing, Heat Treating and Hardening of Carbon and Alloy Steel
Author: Fred H. Colvin A. Juthe
Release Date: January 4, 2007 [EBook #20282]
Language: English
Character set encoding: ISO-8859-1
*** START OF THIS PROJECT GUTENBERG EBOOK THE WORKING OF STEEL ***
Produced by Robert J. Hall
THE
WORKING OF STEEL
ANNEALING, HEAT TREATING
AND
HARDENING OF CARBON AND ALLOY STEEL
BY
FRED H. COLVIN
Member American Society of Mechanical Engineers and Franklin Institute; Editor of the American Machinist, Author of "Machine Shop Arithmetic," "Machine Shop Calculations," "American Machinists' Hand Book."
AND
K. A. JUTHE, M.E.
Chief Engineer, American Metallurgical Corp. Member American Society Mechanical Engineers, American Society Testing Materials, Heat Treatment Association, Etc.
SECOND EDITION
THIRD IMPRESSION
McGRAW-HILL BOOK COMPANY, Inc.
NEW YORK: 370 SEVENTH AVENUE
LONDON: 6 & 8 BOUVERIE ST., E. C. 4
PREFACE TO SECOND EDITION
Advantage has been taken of a reprinting to revise, extensively, the portions of the book relating to the modern science of metallography. Considerable of the matter relating to the influence of chemical composition upon the properties of alloy steels has been rewritten. Furthermore, opportunity has been taken to include some brief notes on methods of physical testing--whereby the metallurgist judges of the excellence of his metal in advance of its actual performance in service.
NEW YORK, N. Y.,
August, 1922.
PREFACE TO FIRST EDITION
The ever increasing uses of steel in all industries and the necessity of securing the best results with the material used, make a knowledge of the proper working of steel more important than ever before. For it is not alone the quality of the steel itself or the alloys used in its composition, but the proper working or treatment of the steel which determines whether or not the best possible use has been made of it.
With this in mind, the authors have drawn, not only from their own experience but from the best sources available, information as to the most approved methods of working the various kinds of steel now in commercial use. These include low carbon, high carbon and alloy steels of various kinds, and from a variety of industries. The automotive field has done much to develop not only new alloys but efficient methods of working them and has been drawn on liberally so as to show the best practice. The practice in government arsenals on steels used in fire arms is also given.
While not intended as a treatise on steel making or metallurgy in any sense, it has seemed best to include a little information as to the making of different steels and to give considerable general information which it is believed will be helpful to those who desire to become familiar with the most modern methods of working steel.
It is with the hope that this volume, which has endeavored to give due credit to all sources of information, may prove of value to its readers and through them to the industry at large.
July, 1921.
THE AUTHORS.
CONTENTS
PREFACE
INTRODUCTION
CHAPTER I.
STEEL MAKING II. COMPOSITION AND PROPERTIES OF STEELS III. ALLOYS AND THEIR EFFECT UPON STEEL IV. APPLICATION OF LIBERTY ENGINE MATERIALS TO THE AUTOMOTIVE INDUSTRY V. THE FORGING OF STEEL VI. ANNEALING VII. CASE-HARDENING OR SURFACE-CARBURIZING VIII. HEAT TREATMENT OF STEEL IX. HARDENING CARBON STEEL FOR TOOLS X. HIGH SPEED STEEL XI. FURNACES XII. PYROMETRY AND PYROMETERS
APPENDIX
INDEX
INTRODUCTION
THE ABC OF IRON AND STEEL
In spite of all that has been written about iron and steel there are many hazy notions in the minds of many mechanics regarding them. It is not always clear as to just what makes the difference between iron and steel. We know that high-carbon steel makes a better cutting tool than low-carbon steel. And yet carbon alone does not make all the difference because we know that cast iron has more carbon than tool steel and yet it does not make a good cutting tool.
Pig iron or cast iron has from 3 to 5 per cent carbon, while good tool steel rarely has more than 1-1/4 per cent of carbon, yet one is soft and has a coarse grain, while the other has a fine grain and can be hardened by heating and dipping in water. Most of the carbon in cast iron is in a form like graphite, which is almost pure carbon, and is therefore called graphitic carbon. The resemblance can be seen by noting how cast-iron borings blacken the hands just as does graphite, while steel turnings do not have the same effect. The difference is due to the fact that the carbon in steel is not in a graphitic form
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.