sq. in. If severe water-hammer is present, the ordinary working stress should be materially less than the latter, otherwise the spiral bands will stretch enough to permit the water to spurt out between the staves. This was determined to be true on 4,500 ft. of 12-in. pipe connecting the Carrizozo Reservoir with a water column at the roundhouse there. In pumping tests at the mills, attempts were made, at various times, to burst the pipe, but they never succeeded. Before the elastic limit was exceeded, the water was running out between the staves as fast as the pump forced it in. On the following day, pipe thus tested would carry the pressure for which it was designed without leaking. Except for defects in the band, pipe of this kind will not burst in the service for which it is properly designed. This is true, without exception, of the 100,000 pieces of pipe in this service.
There has been some trouble with a number of the riveted splices on the banding. Such a splice occurs for every spool of banding used. In every case where one of these splices has pulled apart, the break was the result of defective riveting, permitting the rivets to pull out. In no case has a rivet been found sheared off, and even one good rivet appears to be sufficient to prevent rupture. The explanation is found in the high frictional resistance between the band and the pipe, which distributes the weakness of a bad splice over several adjacent turns of the band around the pipe. The band loosens a few turns only on either side of a parted splice, generally not more than three. In no case has any pipe been removed from the trench, repairs being made without interruption to the flow of water.
It is desirable to substitute welding for the riveting of these splices. The trouble is not present with the round band, the wrapped splice of the latter giving practically 100% efficiency.
The flat band was chosen for this work because it is the more effectively buried in and protected by the asphalt, and will not crush the soft wood staves under high pressure. The longevity of either the flat or the round steel band is dependent primarily on effective protection against contact with corrosive elements. Wrought iron should be used for this kind of service, and, for the same reason, for many other purposes. Engineers and consumers should join in some comprehensive and effective plan to bring back the old-time production of high-grade wrought iron.
Wood Staves.--The staves of this pipe are of Michigan and Canadian white pine. This pine cannot now be had of clear stuff or in long lengths in large quantities; otherwise, it is unexcelled. Douglas fir and yellow pine, coarser and harder woods, have the advantages of clear lumber and long length. Cypress is not as plentiful, and redwood is costly. The mill tests did not determine definitely the minimum degree of seasoning necessary, and press of time compelled the acceptance of some rather green lumber. Service tests do not show that there is any abnormal leakage from pipe made of such lumber, and it could not now be distinguished in the trench by such tests. Undoubtedly, however, thorough air seasoning should be required.
Bored Pipe.--Owing to its small size, a part of the 3-1/2-in. pipe was bored from the log. This was a mistake, for bored pipe has a rough interior and a reduced capacity. The inspection and culling are difficult and unsatisfactory, and imperfections readily apparent in a stave frequently escape detection in bored pipe.
Pipe Joints.--The chamber and tenon of this pipe is an all-wood joint, 4 in. deep. An iron sleeve makes a better and stronger joint. It compensates for any lack of initial tension in the banding over the chamber of the wood joint, and secures full advantage of the swelling of the wood. Cast iron is better than steel; it is more rigid, and its granulated surface breaks up the smoothness of the wood surface swelling against it. One objection to the cast-iron sleeve is that of cost, but it adds 4 in. to the effective length of every section of pipe, as compared with the wood joints. On the Pacific Coast, a banded wood-stave sleeve is used with success.
Coating.--To preserve the banding from corrosion and the wood from exterior decay, the pipe is thoroughly enveloped in refined asphalt having a flow-point adjusted to the prevailing temperature during shipment and laying. One grade can be used through a considerable range of temperature. This coating endured a 2,000-mile shipment successfully. Each piece was carefully inspected along the trench, and any break in the coating was thoroughly painted with hot asphalt. Enough of the latter came in barrels, with the pipe, from the factory.
The first 37 miles of
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.