The Unseen World and Other Essays | Page 6

John Fiske
of the nebulae which we now see in distant parts of the heavens, for, whatever its primitive shape, the equalization of its rotation would in time make it spheroidal. That the QUANTITY of rotation was the same then as now is unquestionable; for no system of particles, great or small, can acquire or lose rotation by any action going on within itself, any more than a man could pick himself up by his waistband and lift himself over a stone wale So that the primitive rotating spheroidal solar nebula is not a matter of assumption, but is just what must once have existed, provided there has been no breach of continuity in nature's operations. Now proceeding to reason back from the past to the present, it has been shown that the abandonment of successive equatorial belts by the contracting solar mass must have ensued in accordance with known mechanical laws; and in similar wise, under ordinary circumstances. each belt must have parted into fragments, and the fragments chasing each other around the same orbit, must have at last coalesced into a spheroidal planet. Not only this, but it has also been shown that as the result of such a process the relative sizes of the planets would be likely to take the order which they now follow; that the ring immediately succeeding that of Jupiter would be likely to abort and produce a great number of tiny planets instead of one good-sized one; that the outer planets would be likely to have many moons, and that Saturn, besides having the greatest number of moons, would be likely to retain some of his inner rings unbroken; that the earth would be likely to have a long day and Jupiter a short one; that the extreme outer planets would be not unlikely to rotate in a retrograde direction; and so on, through a long list of interesting and striking details. Not only, therefore, are we driven to the inference that our solar system was once a vaporous nebula, but we find that the mere contraction of such a nebula, under the influence of the enormous mutual gravitation of its particles, carries with it the explanation of both the more general and the more particular features of the present system. So that we may fairly regard this stupendous process as veritable matter of history, while we proceed to study it under some further aspects and to consider what consequences are likely to follow.
Our attention should first be directed to the enormous waste of energy which has accompanied this contraction of the solar nebula. The first result of such a contraction is the generation of a great quantity of heat, and when the heat thus generated has been lost by radiation into surrounding space it becomes possible for the contraction to continue. Thus, as concentration goes on, heat is incessantly generated and incessantly dissipated. How long this process is to endure depends chiefly on the size of the contracting mass, as small bodies radiate heat much faster than large ones. The moon seems to be already thoroughly refrigerated, while Jupiter and Saturn are very much hotter than the earth, as is shown by the tremendous atmospheric phenomena which occur on their surfaces. The sun, again, generates heat so rapidly, owing to his great energy of contraction, and loses it so slowly, owing to his great size, that his surface is always kept in a state of incandescence. His surface-temperature is estimated at some three million degrees of Fahrenheit, and a diminution of his diameter far too small to be detected by the finest existing instruments would suffice to maintain the present supply of heat for more than fifty centuries. These facts point to a very long future during which the sun will continue to warm the earth and its companion planets, but at the same time they carry on their face the story of inevitable ultimate doom. If things continue to go on as they have all along gone on, the sun must by and by grow black and cold, and all life whatever throughout the solar system must come to an end. Long before this consummation, however, life will probably have become extinct through the refrigeration of each of the planets into a state like the present state of the moon, in which the atmosphere and oceans have disappeared from the surface. No doubt the sun will continue to give out heat a long time after heat has ceased to be needed for the support of living organisms. For the final refrigeration of the sun will long be postponed by the fate of the planets themselves. The separation of the planets from their parent solar mass seems to be after all but a temporary separation. So nicely balanced are they now in their
Continue reading on your phone by scaning this QR Code

 / 126
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.