The Unseen World and Other Essays | Page 9

John Fiske
consider that all other visible stars and nebulae are cooling and contracting bodies, like our sun, to what other conclusion could we very well come? When we look at Sirius, for instance, we do not see him surrounded by planets, for at such a distance no planet could be visible, even Sirius himself, though fourteen times larger than our sun, appearing only as a "twinkling little star." But a comparative survey of the heavens assures us that Sirius can hardly have arrived at his present stage of concentration without detaching, planet-forming rings, for there is no reason for supposing that mechanical laws out there are at all different from what they are in our own system. And the same kind of inference must apply to all the matured stars which we see in the heavens.
When we duly take all these things into the account, the case of our solar system will appear as only one of a thousand cases of evolution and dissolution with which the heavens furnish us. Other stars, like our sun, have undoubtedly started as vaporous masses, and have thrown off planets in contracting. The inference may seem a bold one, but it after all involves no other assumption than that of the continuity of natural phenomena. It is not likely, therefore, that the solar system will forever be left to itself. Stars which strongly gravitate toward each other, while moving through a perennially resisting medium, must in time be drawn together. The collision of our extinct sun with one of the Pleiades, after this manner, would very likely suffice to generate even a grander nebula than the one with which we started. Possibly the entire galactic system may, in an inconceivably remote future, remodel itself in this way; and possibly the nebula from which our own group of planets has been formed may have owed its origin to the disintegration of systems which had accomplished their career in the depths of the bygone eternity.
When the problem is extended to these huge dimensions, the prospect of an ultimate cessation of cosmical work is indefinitely postponed, but at the same time it becomes impossible for us to deal very securely with the questions we have raised. The magnitudes and periods we have introduced are so nearly infinite as to baffle speculation itself: One point, however, we seem dimly to discern. Supposing the stellar universe not to be absolutely infinite in extent, we may hold that the day of doom, so often postponed, must come at last. The concentration of matter and dissipation of energy, so often checked, must in the end prevail, so that, as the final outcome of things, the entire universe will be reduced to a single enormous ball, dead and frozen, solid and black, its potential energy of motion having been all transformed into heat and radiated away. Such a conclusion has been suggested by Sir William Thomson, and it is quite forcibly stated by the authors of "The Unseen Universe." They remind us that "if there be any one form of energy less readily or less completely transformable than the others, and if transformations constantly go on, more and more of the whole energy of the universe will inevitably sink into this lower grade as time advances." Now radiant heat, as we have seen, is such a lower grade of energy. "At each transformation of heat-energy into work, a large portion is degraded, while only a small portion is transformed into work. So that while it is very easy to change all of our mechanical or useful energy into heat, it is only possible to transform a portion of this heat-energy back again into work. After each change, too, the heat becomes more and more dissipated or degraded, and less and less available for any future transformation. In other words," our authors continue, "the tendency of heat is towards equalization; heat is par excellence the communist of our universe, and it will no doubt ultimately bring the system to an end. .... It is absolutely certain that life, so far as it is physical, depends essentially upon transformations of energy; it is also absolutely certain that age after age the possibility of such transformations is becoming less and less; and, so far as we yet know, the final state of the present universe must be an aggregation (into one mass) of all the matter it contains, i. e. the potential energy gone, and a practically useless state of kinetic energy, i. e. uniform temperature throughout that mass." Thus our authors conclude that the visible universe began in time and will in time come to an end; and they add that under the physical conditions of such a universe "immortality is impossible."
Concerning the latter inference we shall by and by have something to say. Meanwhile
Continue reading on your phone by scaning this QR Code

 / 126
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.