as Sir Charles Lyell remarked, the same species of lepidodendra are so widely distributed in the coal measures of Europe and America, their spores being capable of an easy transportation by the wind.
[Illustration: FIG. 14.--_Lepidostrobus._ Coal-shale.]
One striking feature in connection with the fruit of the lepidodendron and other ancient representatives of the club-moss tribe, is that the bituminous coals in many, if not in most, instances, are made up almost entirely of their spores and spore-cases. Under a microscope, a piece of such coal is seen to be thronged with the minute rounded bodies of the spores interlacing one another and forming almost the whole mass, whilst larger than these, and often indeed enclosing them, are flattened bag-like bodies which are none other than the compressed sporangia which contained the former.
[Illustration: FIG. 15.--Lycopodites. Coal sandstone.]
Now, the little Scottish or Alpine club-moss which is so familiar, produces its own little cones, each with its series of outside scales or leaves; these are attached to the bags or spore-cases, which are crowded with spores. Although in miniature, yet it produces its fruit in just the same way, at the terminations of its little branches, and the spores, the actual germs of life, when examined microscopically, are scarcely distinguishable from those which are contained in certain bituminous coals. And, although ancient club-mosses have been found in a fossilised condition at least forty-nine feet high, the spores are no larger than those of our miniature club-mosses of the present day.
The spores are more or less composed of pure bitumen, and the bituminous nature of the coal depends largely on the presence or absence of these microscopic bodies in it. The spores of the living club-mosses contain so much resinous matter that they are now largely used in the making of fireworks, and upon the presence of this altered resinous matter in coal depends its capability of providing a good blazing coal.
At first sight it seems almost impossible that such a minute cause should result in the formation of huge masses of coal, such an inconceivable number of spores being necessary to make even the smallest fragment of coal. But if we look at the cloud of spores that can be shaken from a single spike of a club-moss, then imagine this to be repeated a thousand times from each branch of a fairly tall tree, and then finally picture a whole forest of such trees shedding in due season their copious showers of spores to earth, we shall perhaps be less amazed than we were at first thought, at the stupendous result wrought out by so minute an object.
Another well-known form of carboniferous vegetation is that known as the _Sigillaria_, and, connected with this form is one, which was long familiar under the name of _Stigmaria_, but which has since been satisfactorily proved to have formed the branching root of the sigillaria. The older geologists were in the habit of placing these plants among the tree-ferns, principally on account of the cicatrices which were left at the junctions of the leaf-stalks with the stem, after the former had fallen off. No foliage had, however, been met with which was actually attached to the plants, and hence, when it was discovered that some of them had long attenuated leaves not at all like those possessed by ferns, geologists were compelled to abandon this classification of them, and even now no satisfactory reference to existing orders of them has been made, owing to their anomalous structure. The stems are fluted from base to stem, although this is not so apparent near the base, whilst the raised prominences which now form the cicatrices, are arranged at regular distances within the vertical grooves.
When they have remained standing for some length of time, and the strata have been allowed quietly to accumulate around the trunks, they have escaped compression. They were evidently, to a great extent, hollow like a reed, so that in those trees which still remain vertical, the interior has become filled up by a coat of sandstone, whilst the bark has become transformed into an envelope of an inch, or half an inch of coal. But many are found lying in the strata in a horizontal plane. These have been cast down and covered up by an ever-increasing load of strata, so that the weight has, in the course of time, compressed the tree into simply the thickness of the double bark, that is, of the two opposite sides of the envelope which covered it when living.
Sigillarae grew to a very great height without branching, some specimens having measured from 60 to 70 feet long. In accordance with their outside markings, certain types are known as _syringodendron_, _favularia_, and clathraria. Diploxylon is a term applied to an interior stem referable to this family.
[Illustration: FIG. 16.--Stigmaria ficoides.
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.