them. The rods are sometimes very blunt at the ends, almost as if cut square across, while in other species they are more rounded and occasionally slightly tapering. Sometimes they are surrounded by a thin layer of some gelatinous substance, which forms what is called a capsule (Fig. 10). This capsule may connect them and serve as a cement, to prevent the separate elements of a chain from falling apart.
Sometimes such a gelatinous secretion will unite great masses of bacteria into clusters, which may float on the surface of the liquid in which they grow or may sink to the bottom. Such masses are called zoogloea, and their general appearance serves as one of the characters for distinguishing different species of bacteria (Fig. 10, a and b). When growing in solid media, such as a nutritious liquid made stiff with gelatine, the different species have different methods of spreading from their central point of origin. A single bacterium in the midst of such a stiffened mass will feed upon it and produce descendants rapidly; but these descendants, not being able to move through the gelatine, will remain clustered together in a mass, which the bacteriologist calls a colony. But their method of clustering, due to different methods of growth, is by no means always alike, and these colonies show great differences in general appearance. The differences appear to be constant, however, for the same species of bacteria, and hence the shape and appearance of the colony enable bacteriologists to discern different species (Fig. II). All these points of difference are of practical use to the bacteriologist in distinguishing species.
SPORE FORMATION.
In addition to their power of reproduction by simple division, many species of bacteria have a second method by means of spores. Spores are special rounded or oval bits of bacteria protoplasm capable of resisting adverse conditions which would destroy the ordinary bacteria. They arise among bacteria in two different methods.
Endogenous spores.--These spores arise inside of the rods or the spiral forms (Fig. 12). They first appear as slight granular masses, or as dark points which become gradually distinct from the rest of the rod. Eventually there is thus formed inside the rod a clear, highly refractive, spherical or oval spore, which may even be of a greater diameter than the rod producing it, thus causing it to swell out and become spindle formed [Fig. 12 c]. These spores may form in the middle or at the ends of the rods (Fig. 12). They may use up all the protoplasm of the rod in their formation, or they may use only a small part of it, the rod which forms them continuing its activities in spite of the formation of the spores within it. They are always clear and highly refractive from containing little water, and they do not so readily absorb staining material as the ordinary rods. They appear to be covered with a layer of some substance which resists the stain, and which also enables them to resist various external agencies. This protective covering, together with their small amount of water, enables them to resist almost any amount of drying, a high degree of heat, and many other adverse conditions. Commonly the spores break out of the rod, and the rod producing them dies, although sometimes the rod may continue its activity even after the spores have been produced.
Arthrogenous spores (?).--Certain species of bacteria do not produce spores as just described, but may give rise to bodies that are sometimes called arthrospores. These bodies are formed as short segments of rods. A long rod may sometimes break up into several short rounded elements, which are clear and appear to have a somewhat increased power of resisting adverse conditions. The same may happen among the spherical forms, which only in rare instances form endogenous spores. Among the spheres which form a chain of streptococci some may occasionally be slightly different from the rest. They are a little larger, and have been thought to have an increased resisting power like that of true spores (Fig. 13 b). It is quite doubtful, however, whether it is proper to regard these bodies as spores. There is no good evidence that they have any special resisting power to heat like endogenous spores, and bacteriologists in general are inclined to regard them simply as resting cells. The term arthrospores has been given to them to indicate that they are formed as joints or segments, and this term may be a convenient one to retain although the bodies in question are not true spores.
Still a different method of spore formation occurs in a few peculiar bacteria. In this case (Fig. 14) the protoplasm in the large thread breaks into many minute spherical bodies, which finally find exit. The spores thus formed may not be all alike,
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.