one practically acquainted with palaeontology is aware that it is not every tooth, nor every bone, which enables us to form a judgment of the character of the animal to which it belonged; and that it is possible to possess many teeth, and even a large portion of the skeleton of an extinct animal, and yet be unable to reconstruct its skull or its limbs. It is only when the tooth or bone presents peculiarities, which we know by previous experience to be characteristic of a certain group, that we can safely predict that the fossil belonged to an animal of the same group. Any one who finds a cow's grinder may be perfectly sure that it belonged to an animal which had two complete toes on each foot and ruminated; any one who finds a horse's grinder may be as sure that it had one complete toe on each foot and did not ruminate; but if ruminants and horses were extinct animals of which nothing but the grinders had ever been discovered, no amount of physiological reasoning could have enabled us to reconstruct either animal, still less to have divined the wide differences between the two. Cuvier, in the "Discours sur les Revolutions de la Surface du Globe," strangely credits himself, and has ever since been credited by others, with the invention of a new method of palaeontological research. But if you will turn to the "Recherches sur les Ossemens Fossiles" and watch Cuvier, not speculating, but working, you will find that his method is neither more nor less than that of Steno. If he was able to make his famous prophecy from the jaw which lay upon the surface of a block of stone to the pelvis of the same animal which lay hidden in it, it was not because either he, or any one else, knew, or knows, why a certain form of jaw is, as a rule, constantly accompanied by the presence of marsupial bones, but simply because experience has shown that these two structures are co-ordinated.
The settlement of the nature of fossils led at once to the next advance of palaeontology, viz. its application to the deciphering of the history of the earth. When it was admitted that fossils are remains of animals and plants, it followed that, in so far as they resemble terrestrial, or freshwater, animals and plants, they are evidences of the existence of land, or fresh water; and, in so far as they resemble marine organisms, they are evidences of the existence of the sea at the time at which they were parts of actually living animals and plants. Moreover, in the absence of evidence to the contrary, it must be admitted that the terrestrial or the marine organisms implied the existence of land or sea at the place in which they were found while they were yet living. In fact, such conclusions were immediately drawn by everybody, from the time of Xenophanes downwards, who believed that fossils were really organic remains. Steno discusses their value as evidence of repeated alteration of marine and terrestrial conditions upon the soil of Tuscany in a manner worthy of a modern geologist. The speculations of De Maillet in the beginning of the eighteenth century turn upon fossils; and Buffon follows him very closely in those two remarkable works, the "Theorie de la Terre" and the "Epoques de la Nature" with which he commenced and ended his career as a naturalist.
The opening sentences of the "Epoques de la Nature" show us how fully Buffon recognised the analogy of geological with archaeological inquiries. "As in civil history we consult deeds, seek for coins, or decipher antique inscriptions in order to determine the epochs of human revolutions and fix the date of moral events; so, in natural history, we must search the archives of the world, recover old monuments from the bowels of the earth, collect their fragmentary remains, and gather into one body of evidence all the signs of physical change which may enable us to look back upon the different ages of nature. It is our only means of fixing some points in the immensity of space, and of setting a certain number of waymarks along the eternal path of time."
Buffon enumerates five classes of these monuments of the past history of the earth, and they are all facts of palaeontology. In the first place, he says, shells and other marine productions are found all over the surface and in the interior of the dry land; and all calcareous rocks are made up of their remains. Secondly, a great many of these shells which are found in Europe are not now to be met with in the adjacent seas; and, in the slates and other deep-seated deposits, there are remains of fishes and of plants
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.