find a great mass of flesh, or what is technically called muscle, being the substance which by its power of contraction enables the animal to move. These muscles move the hard parts one upon the other, and so give that strength and power of motion which renders the Horse so useful to us in the performance of those services in which we employ him.
And then, on separating and removing the whole of this skin and flesh, you have a great series of bones, hard structures, bound together with ligaments, and forming the skeleton which is represented here.
[FIGURE 1. (Section through a horse.)
FIGURE 2. (Section through a cell.)]
In that skeleton there are a number of parts to be recognized. The long series of bones, beginning from the skull and ending in the tail, is called the spine, and those in front are the ribs; and then there are two pairs of limbs, one before and one behind; and there are what we all know as the fore-legs and the hind-legs. If we pursue our researches into the interior of this animal, we find within the framework of the skeleton a great cavity, or rather, I should say, two great cavities,--one cavity beginning in the skull and running through the neck-bones, along the spine, and ending in the tail, containing the brain and the spinal marrow, which are extremely important organs. The second great cavity, commencing with the mouth, contains the gullet, the stomach, the long intestine, and all the rest of those internal apparatus which are essential for digestion; and then in the same great cavity, there are lodged the heart and all the great vessels going from it; and, besides that, the organs of respiration-- the lungs: and then the kidneys, and the organs of reproduction, and so on. Let us now endeavour to reduce this notion of a horse that we now have, to some such kind of simple expression as can be at once, and without difficulty, retained in the mind, apart from all minor details. If I make a transverse section, that is, if I were to saw a dead horse across, I should find that, if I left out the details, and supposing I took my section through the anterior region, and through the fore-limbs, I should have here this kind of section of the body (Fig. 1). Here would be the upper part of the animal--that great mass of bones that we spoke of as the spine (a, Fig. 1). Here I should have the alimentary canal (b, Fig. 1). Here I should have the heart (c, Fig. 1); and then you see, there would be a kind of double tube, the whole being inclosed within the hide; the spinal marrow would be placed in the upper tube (a, Fig. 1), and in the lower tube (d d, Fig. 1), there would be the alimentary canal (b), and the heart (c); and here I shall have the legs proceeding from each side. For simplicity's sake, I represent them merely as stumps (e e, Fig. 1). Now that is a horse--as mathematicians would say--reduced to its most simple expression. Carry that in your minds, if you please, as a simplified idea of the structure of the Horse. The considerations which I have now put before you belong to what we technically call the 'Anatomy' of the Horse. Now, suppose we go to work upon these several parts,--flesh and hair, and skin and bone, and lay open these various organs with our scalpels, and examine them by means of our magnifying- glasses, and see what we can make of them. We shall find that the flesh is made up of bundles of strong fibres. The brain and nerves, too, we shall find, are made up of fibres, and these queer-looking things that are called ganglionic corpuscles. If we take a slice of the bone and examine it, we shall find that it is very like this diagram of a section of the bone of an ostrich, though differing, of course, in some details; and if we take any part whatsoever of the tissue, and examine it, we shall find it all has a minute structure, visible only under the microscope. All these parts constitute microscopic anatomy or 'Histology.' These parts are constantly being changed; every part is constantly growing, decaying, and being replaced during the life of the animal. The tissue is constantly replaced by new material; and if you go back to the young state of the tissue in the case of muscle, or in the case of skin, or any of the organs I have mentioned, you will find that they all come under the same condition. Every one of these microscopic filaments and fibres (I now speak merely of the general character of the
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.