to bend. If therefore the upper part be wholly protected from light, the lower part may be exposed for hours to it, and yet does not become in the least bent, although this would have occurred quickly if the upper part had been excited by light. Secondly, with the radicles of seedlings, the tip is sensitive to various stimuli, especially to very slight pressure, and when thus excited, transmits an influence to the upper part, causing it to bend from the pressed side. On the other hand, if the tip is subjected to the vapour of water proceeding from one side, the upper part of the radicle bends towards this side. Again it is the tip, as stated by Ciesielski, though denied by others, which is sensitive to the attraction of gravity, and by transmission causes the adjoining parts of the radicle to bend towards the centre of the earth. These several cases of the effects of contact, other irritants, vapour, light, and the [page 5] attraction of gravity being transmitted from the excited part for some little distance along the organ in question, have an important bearing on the theory of all such movements.
[Terminology.--A brief explanation of some terms which will be used, must here be given. With seedlings, the stem which supports the cotyledons (i.e. the organs which represent the first leaves) has been called by many botanists the hypocotyledonous stem, but for brevity sake we will speak of it merely as the hypocotyl: the stem immediately above the cotyledons will be called the epicotyl or plumule. The radicle can be distinguished from the hypocotyl only by the presence of root-hairs and the nature of its covering. The meaning of the word circumnutation has already been explained. Authors speak of positive and negative heliotropism,*--that is, the bending of an organ to or from the light; but it is much more convenient to confine the word heliotropism to bending towards the light, and to designate as apheliotropism bending from the light. There is another reason for this change, for writers, as we have observed, occasionally drop the adjectives positive and negative, and thus introduce confusion into their discussions. Diaheliotropism may express a position more or less transverse to the light and induced by it. In like manner positive geotropism, or bending towards the centre of the earth, will be called by us geotropism; apogeotropism will mean bending in opposition to gravity or from the centre of the earth; and diageotropism, a position more or less transverse to the radius of the earth. The words heliotropism and geotropism properly mean the act of moving in relation to the light or the earth; but in the same manner as gravitation, though defined as "the act of tending to the centre," is often used to express the cause of a body falling, so it will be found convenient occasionally to employ heliotropism and geotropism, etc., as the cause of the movements in question.
The term epinasty is now often used in Germany, and implies that the upper surface of an organ grows more quickly than the
* The highly useful terms of Heliotropism and Geotropism were first used by Dr. A. B. Frank: see his remarkable 'Beitr?ge zur Pflanzenphysiologie,' 1868. [page 6] lower surface, and thus causes it to bend downwards. Hyponasty is the reverse, and implies increased growth along the lower surface, causing the part to bend upwards.*
Methods of Observation.--The movements, sometimes very small and sometimes considerable in extent, of the various organs observed by us, were traced in the manner which after many trials we found to be best, and which must be described. Plants growing in pots were protected wholly from the light, or had light admitted from above, or on one side as the case might require, and were covered above by a large horizontal sheet of glass, and with another vertical sheet on one side. A glass filament, not thicker than a horsehair, and from a quarter to three-quarters of an inch in length, was affixed to the part to be observed by means of shellac dissolved in alcohol. The solution was allowed to evaporate, until it became so thick that it set hard in two or three seconds, and it never injured the tissues, even the tips of tender radicles, to which it was applied. To the end of the glass filament an excessively minute bead of black sealing-wax was cemented, below or behind which a bit of card with a black dot was fixed to a stick driven into the ground. The weight of the filament was so slight that even small leaves were not perceptibly pressed down. another method of observation, when much magnification of the movement was not required, will presently be described. The bead and the dot on the card were viewed through the
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.