The Outline of Science, Vol. 1 | Page 7

J. Arthur Thomson
aim of the OUTLINE is to give the reader a clear and concise view of the essentials of present-day science, so that he may follow with intelligence the modern advance and share appreciatively in man's continued conquest of his kingdom.
J. ARTHUR THOMSON.

I
THE ROMANCE OF THE HEAVENS

THE SCALE OF THE UNIVERSE--THE SOLAR SYSTEM
�� 1
The story of the triumphs of modern science naturally opens with Astronomy. The picture of the Universe which the astronomer offers to us is imperfect; the lines he traces are often faint and uncertain. There are many problems which have been solved, there are just as many about which there is doubt, and notwithstanding our great increase in knowledge, there remain just as many which are entirely unsolved.
The problem of the structure and duration of the universe [said the great astronomer Simon Newcomb] is the most far-reaching with which the mind has to deal. Its solution may be regarded as the ultimate object of stellar astronomy, the possibility of reaching which has occupied the minds of thinkers since the beginning of civilisation. Before our time the problem could be considered only from the imaginative or the speculative point of view. Although we can to-day attack it to a limited extent by scientific methods, it must be admitted that we have scarcely taken more than the first step toward the actual solution.... What is the duration of the universe in time? Is it fitted to last for ever in its present form, or does it contain within itself the seeds of dissolution? Must it, in the course of time, in we know not how many millions of ages, be transformed into something very different from what it now is? This question is intimately associated with the question whether the stars form a system. If they do, we may suppose that system to be permanent in its general features; if not, we must look further for our conclusions.
The Heavenly Bodies
The heavenly bodies fall into two very distinct classes so far as their relation to our Earth is concerned; the one class, a very small one, comprises a sort of colony of which the Earth is a member. These bodies are called planets, or wanderers. There are eight of them, including the Earth, and they all circle round the sun. Their names, in the order of their distance from the sun, are Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and of these Mercury, the nearest to the sun, is rarely seen by the naked eye. Uranus is practically invisible, and Neptune quite so. These eight planets, together with the sun, constitute, as we have said, a sort of little colony; this colony is called the Solar System.
The second class of heavenly bodies are those which lie outside the solar system. Every one of those glittering points we see on a starlit night is at an immensely greater distance from us than is any member of the Solar System. Yet the members of this little colony of ours, judged by terrestrial standards, are at enormous distances from one another. If a shell were shot in a straight line from one side of Neptune's orbit to the other it would take five hundred years to complete its journey. Yet this distance, the greatest in the Solar System as now known (excepting the far swing of some of the comets), is insignificant compared to the distances of the stars. One of the nearest stars to the earth that we know of is Alpha Centauri, estimated to be some twenty-five million millions of miles away. Sirius, the brightest star in the firmament, is double this distance from the earth.
We must imagine the colony of planets to which we belong as a compact little family swimming in an immense void. At distances which would take our shell, not hundreds, but millions of years to traverse, we reach the stars--or rather, a star, for the distances between stars are as great as the distance between the nearest of them and our Sun. The Earth, the planet on which we live, is a mighty globe bounded by a crust of rock many miles in thickness; the great volumes of water which we call our oceans lie in the deeper hollows of the crust. Above the surface an ocean of invisible gas, the atmosphere, rises to a height of about three hundred miles, getting thinner and thinner as it ascends.
[Illustration: LAPLACE
One of the greatest mathematical astronomers of all time and the originator of the nebular theory.]
[Illustration: Photo: Royal Astronomical Society.
PROFESSOR J. C. ADAMS
who, anticipating the great French mathematician, Le Verrier, discovered the planet Neptune by calculations based on the irregularities of the orbit of Uranus. One of the most dramatic discoveries in the history of Science.]
[Illustration: Photo: Elliott & Fry, Ltd.
PROFESSOR EDDINGTON
Professor of Astronomy at Cambridge. The most
Continue reading on your phone by scaning this QR Code

 / 135
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.