famous of the English disciples of Einstein.]
[Illustration: FIG. 1.--DIAGRAMS OF THE SOLAR SYSTEM
THE COMPARATIVE DISTANCES OF THE PLANETS
(Drawn approximately to scale)
The isolation of the Solar System is very great. On the above scale the nearest star (at a distance of 25 trillions of miles) would be over one half mile away. The hours, days, and years are the measures of time as we use them; that is: Jupiter's "Day" (one rotation of the planet) is made in ten of our hours; Mercury's "Year" (one revolution of the planet around the Sun) is eighty-eight of our days. Mercury's "Day" and "Year" are the same. This planet turns always the same side to the Sun.]
[Illustration: THE COMPARATIVE SIZES OF THE SUN AND THE PLANETS (Drawn approximately to scale)
On this scale the Sun would be 17-1/2 inches in diameter; it is far greater than all the planets put together. Jupiter, in turn, is greater than all the other planets put together.]
Except when the winds rise to a high speed, we seem to live in a very tranquil world. At night, when the glare of the sun passes out of our atmosphere, the stars and planets seem to move across the heavens with a stately and solemn slowness. It was one of the first discoveries of modern astronomy that this movement is only apparent. The apparent creeping of the stars across the heavens at night is accounted for by the fact that the earth turns upon its axis once in every twenty-four hours. When we remember the size of the earth we see that this implies a prodigious speed.
In addition to this the earth revolves round the sun at a speed of more than a thousand miles a minute. Its path round the sun, year in year out, measures about 580,000,000 miles. The earth is held closely to this path by the gravitational pull of the sun, which has a mass 333,432 times that of the earth. If at any moment the sun ceased to exert this pull the earth would instantly fly off into space straight in the direction in which it was moving at the time, that is to say, at a tangent. This tendency to fly off at a tangent is continuous. It is the balance between it and the sun's pull which keeps the earth to her almost circular orbit. In the same way the seven other planets are held to their orbits.
Circling round the earth, in the same way as the earth circles round the sun, is our moon. Sometimes the moon passes directly between us and the sun, and cuts off the light from us. We then have a total or partial eclipse of the sun. At other times the earth passes directly between the sun and the moon, and causes an eclipse of the moon. The great ball of the earth naturally trails a mighty shadow across space, and the moon is "eclipsed" when it passes into this.
The other seven planets, five of which have moons of their own, circle round the sun as the earth does. The sun's mass is immensely larger than that of all the planets put together, and all of them would be drawn into it and perish if they did not travel rapidly round it in gigantic orbits. So the eight planets, spinning round on their axes, follow their fixed paths round the sun. The planets are secondary bodies, but they are most important, because they are the only globes in which there can be life, as we know life.
If we could be transported in some magical way to an immense distance in space above the sun, we should see our Solar System as it is drawn in the accompanying diagram (Fig. 1), except that the planets would be mere specks, faintly visible in the light which they receive from the sun. (This diagram is drawn approximately to scale.) If we moved still farther away, trillions of miles away, the planets would fade entirely out of view, and the sun would shrink into a point of fire, a star. And here you begin to realize the nature of the universe. The sun is a star. The stars are suns. Our sun looks big simply because of its comparative nearness to us. The universe is a stupendous collection of millions of stars or suns, many of which may have planetary families like ours.
§ 2
The Scale of the Universe
How many stars are there? A glance at a photograph of star-clouds will tell at once that it is quite impossible to count them. The fine photograph reproduced in Figure 2 represents a very small patch of that pale-white belt, the Milky Way, which spans the sky at night. It is true that this is a particularly rich area of the Milky Way, but the entire
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.