has now become possible to measure exactly the elements which enter into nearly all physical phenomena, and these measurements are taken with ever increasing precision. Every time a chapter in science progresses, science shows itself more exacting; it perfects its means of investigation, it demands more and more exactitude, and one of the most striking features of modern physics is this constant care for strictness and clearness in experimentation.
A veritable science of measurement has thus been constituted which extends over all parts of the domain of physics. This science has its rules and its methods; it points out the best processes of calculation, and teaches the method of correctly estimating errors and taking account of them. It has perfected the processes of experiment, co-ordinated a large number of results, and made possible the unification of standards. It is thanks to it that the system of measurements unanimously adopted by physicists has been formed.
At the present day we designate more peculiarly by the name of metrology that part of the science of measurements which devotes itself specially to the determining of the prototypes representing the fundamental units of dimension and mass, and of the standards of the first order which are derived from them. If all measurable quantities, as was long thought possible, could be reduced to the magnitudes of mechanics, metrology would thus be occupied with the essential elements entering into all phenomena, and might legitimately claim the highest rank in science. But even when we suppose that some magnitudes can never be connected with mass, length, and time, it still holds a preponderating place, and its progress finds an echo throughout the whole domain of the natural sciences. It is therefore well, in order to give an account of the general progress of physics, to examine at the outset the improvements which have been effected in these fundamental measurements, and to see what precision these improvements have allowed us to attain.
§ 2. THE MEASURE OF LENGTH
To measure a length is to compare it with another length taken as unity. Measurement is therefore a relative operation, and can only enable us to know ratios. Did both the length to be measured and the unit chosen happen to vary simultaneously and in the same degree, we should perceive no change. Moreover, the unit being, by definition, the term of comparison, and not being itself comparable with anything, we have theoretically no means of ascertaining whether its length varies.
If, however, we were to note that, suddenly and in the same proportions, the distance between two points on this earth had increased, that all the planets had moved further from each other, that all objects around us had become larger, that we ourselves had become taller, and that the distance travelled by light in the duration of a vibration had become greater, we should not hesitate to think ourselves the victims of an illusion, that in reality all these distances had remained fixed, and that all these appearances were due to a shortening of the rule which we had used as the standard for measuring the lengths.
From the mathematical point of view, it may be considered that the two hypotheses are equivalent; all has lengthened around us, or else our standard has become less. But it is no simple question of convenience and simplicity which leads us to reject the one supposition and to accept the other; it is right in this case to listen to the voice of common sense, and those physicists who have an instinctive trust in the notion of an absolute length are perhaps not wrong. It is only by choosing our unit from those which at all times have seemed to all men the most invariable, that we are able in our experiments to note that the same causes acting under identical conditions always produce the same effects. The idea of absolute length is derived from the principle of causality; and our choice is forced upon us by the necessity of obeying this principle, which we cannot reject without declaring by that very act all science to be impossible.
Similar remarks might be made with regard to the notions of absolute time and absolute movement. They have been put in evidence and set forth very forcibly by a learned and profound mathematician, M. Painlevé.
On the particularly clear example of the measure of length, it is interesting to follow the evolution of the methods employed, and to run through the history of the progress in precision from the time that we have possessed authentic documents relating to this question. This history has been written in a masterly way by one of the physicists who have in our days done the most by their personal labours to add to it glorious pages. M. Benoit, the learned Director of the International Bureau
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.