the number of stars rendered visible. Stars of the second magnitude are 3.4 times as numerous as those of the first, those of the eighth magnitude are three times as numerous as those of the seventh, while the sixteenth magnitude stars are only 1.7 as numerous as those of the fifteenth magnitude. This steadily decreasing ratio is probably due to an actual thinning out of the stars toward the boundaries of the stellar universe, as the most exhaustive tests have failed to give any evidence of absorption of light in its passage through space. But in spite of this decrease, the gain of a single additional magnitude may mean the addition of many millions of stars to the total of those already shown by the 60-inch reflector. Here is one of the chief sources of interest in the possibilities of a 100-inch reflecting telescope.
100-INCH TELESCOPE
[Illustration: Fig. 10. One-hundred-inch mirror, just silvered, rising out of the silvering-room in pier before attachment to lower end of telescope tube. (Seen above.)]
In 1906 the late John D. Hooker, of Los Angeles, gave the Carnegie Institution of Washington a sum sufficient to construct a telescope mirror 100 inches in diameter, and thus large enough to collect 160,000 times the light received by the eye. (Fig. 10.) The casting and annealing of a suitable glass disk, 101 inches in diameter and 13 inches thick, weighing four and one-half tons, was a most difficult operation, finally accomplished by a great French glass company at their factory in the Forest of St. Gobain. A special optical laboratory was erected at the Pasadena headquarters of the Mount Wilson Observatory, and here the long task of grinding, figuring, and testing the mirror was successfully carried out by the observatory opticians. This operation, which is one of great delicacy, required years for its completion. Meanwhile the building, dome, and mounting for the telescope were designed by members of the observatory staff, and the working drawings were prepared. An opportune addition by Mr. Carnegie to the endowment of the Carnegie Institution of Washington, of which the observatory is a branch, permitted the necessary appropriations to be made for the completion and erection of the telescope. Though delayed by the war, during which the mechanical and optical facilities of the observatory shops were utilized for military and naval purposes, the telescope is now in regular use on Mount Wilson.
The instrument is mounted on a massive pier of reinforced concrete, 33 feet high and 52 feet in diameter at the top. A solid wall extends south from this pier a distance of 50 feet, on the west side of which a very powerful spectrograph, for photographing the spectra of the brightest stars, will be mounted. Within the pier are a photographic dark room, a room for silvering the large mirror (which can be lowered into the pier), and the clock-room, where stands the powerful driving-clock, with which the telescope is caused to follow the apparent motion of the stars. (Fig. 11.)
[Illustration: Fig. 11. The driving-clock and worm-gear that cause the 100-inch Hooker telescope to follow the stars.]
The telescope mounting is of the English type, in which the telescope tube is supported by the declination trunnions between the arms of the polar axis, built in the form of a rectangular yoke carried by bearings on massive pedestals to the north and south. These bearings must be aligned exactly parallel to the axis of the earth, and must support the polar axis so freely that it can be rotated with perfect precision by the driving-clock, which turns a worm-wheel 17 feet in diameter, clamped to the lower end of the axis. As this motion must be sufficiently uniform to counteract exactly the rotation of the earth on its axis, and thus to maintain the star images accurately in position in the field of view, the greatest care had to be taken in the construction of the driving-clock and in the spacing and cutting of the teeth in the large worm-wheel. Here, as in the case of all of the more refined parts of the instrument, the work was done by skilled machinists in the observatory shops in Pasadena or on Mount Wilson after the assembling of the telescope. The massive sections of the instrument, some of which weigh as much as ten tons each, were constructed at Quincy, Mass., where machinery sufficiently large to build battleships was available. They were then shipped to California, and transported to the summit of Mount Wilson over a road built for this purpose by the construction division of the observatory, which also built the pier on which the telescope stands, and erected the steel building and dome that cover it.
[Illustration: Fig. 12. Large irregular nebula and star cluster in Sagittarius (Duncan).
Photographed with the 60-inch telescope.]
[Illustration: Fig. 13. Faint spiral nebula
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.