may sometimes be seen lying on the ground. Mr. Galton informs me that on one such occasion (March, 1881), the dead worms averaged one for every two and a half paces in length on a walk in Hyde Park, four paces in width. He counted no less than 45 dead worms in one place in a length of sixteen paces. From the facts above given, it is not probable that these worms could have been drowned, and if they had been drowned they would have perished in their burrows. I believe that they were already sick, and that their deaths were merely hastened by the ground being flooded.
It has often been said that under ordinary circumstances healthy worms never, or very rarely, completely leave their burrows at night; but this is an error, as White of Selborne long ago knew. In the morning, after there has been heavy rain, the film of mud or of very fine sand over gravel-walks is often plainly marked with their tracks. I have noticed this from August to May, both months included, and it probably occurs during the two remaining months of the year when they are wet. On these occasions, very few dead worms could anywhere be seen. On January 31, 1881, after a long- continued and unusually severe frost with much snow, as soon as a thaw set in, the walks were marked with innumerable tracks. On one occasion, five tracks were counted crossing a space of only an inch square. They could sometimes be traced either to or from the mouths of the burrows in the gravel-walks, for distances between 2 or 3 up to 15 yards. I have never seen two tracks leading to the same burrow; nor is it likely, from what we shall presently see of their sense-organs, that a worm could find its way back to its burrow after having once left it. They apparently leave their burrows on a voyage of discovery, and thus they find new sites to inhabit.
Morren states {12} that worms often lie for hours almost motionless close beneath the mouths of their burrows. I have occasionally noticed the same fact with worms kept in pots in the house; so that by looking down into their burrows, their heads could just be seen. If the ejected earth or rubbish over the burrows be suddenly removed, the end of the worm's body may very often be seen rapidly retreating. This habit of lying near the surface leads to their destruction to an immense extent. Every morning during certain seasons of the year, the thrushes and blackbirds on all the lawns throughout the country draw out of their holes an astonishing number of worms, and this they could not do, unless they lay close to the surface. It is not probable that worms behave in this manner for the sake of breathing fresh air, for we have seen that they can live for a long time under water. I believe that they lie near the surface for the sake of warmth, especially in the morning; and we shall hereafter find that they often coat the mouths of their burrows with leaves, apparently to prevent their bodies from coming into close contact with the cold damp earth. It is said that they completely close their burrows during the winter.
Structure.--A few remarks must be made on this subject. The body of a large worm consists of from 100 to 200 almost cylindrical rings or segments, each furnished with minute bristles. The muscular system is well developed. Worms can crawl backwards as well as forwards, and by the aid of their affixed tails can retreat with extraordinary rapidity into their burrows. The mouth is situated at the anterior end of the body, and is provided with a little projection (lobe or lip, as it has been variously called) which is used for prehension. Internally, behind the mouth, there is a strong pharynx, shown in the accompanying diagram (Fig. 1) which is pushed forwards when the animal eats, and this part corresponds, according to Perrier, with the protrudable trunk or proboscis of other annelids. The pharynx leads into the oesophagus, on each side of which in the lower part there are three pairs of large glands, which secrete a surprising amount of carbonate of lime. These calciferous glands are highly remarkable, for nothing like them is known in any other animal. Their use will be discussed when we treat of the digestive process. In most of the species, the oesophagus is enlarged into a crop in front of the gizzard. This latter organ is lined with a smooth thick chitinous membrane, and is surrounded by weak longitudinal, but powerful transverse muscles. Perrier saw these muscles in energetic action; and, as he remarks, the trituration of the food must be
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.