wiped the pane clear, and breathed on it several times. When new drops were formed, I said, "Cissy and auntie have done like this all night in the room." She nodded her little head and amused herself for a long time breathing on the window-pane and watching the tiny drops; and about a month later, when we were travelling back to Italy, I saw her following the drops on the carriage window with her little finger, and heard her say quietly to herself, "Cissy and auntie made you." Had not even this little child some real picture in her mind of invisible water coming from her mouth, and making drops upon the window-pane?
Then again, you must learn something of the language of science. If you travel in a country with no knowledge of its language, you can learn very little about it: and in the same way if you are to go to books to find answers to your questions, you must know something of the language they speak. You need not learn hard scientific names, for the best books have the fewest of these, but you must really understand what is meant by ordinary words.
For example, how few people can really explain the difference between a solid, such as the wood of the table; a liquid, as water; and a gas, such as I can let off from this gas-jet by turning the tap. And yet any child can make a picture of this in his mind if only it has been properly put before him.
All matter in the world is made up of minute parts or particles; in a solid these particles are locked together so tightly that you must tear them forcibly apart if you with to alter the shape of the solid piece. If I break or bend this wood I have to force the particles to move round each other, and I have great difficulty doing it. But in a liquid, though the particles are still held together, they do not cling so tightly, but are able to roll or glide round each other, so that when you pour water out of a cup on to a table, it loses its cuplike shape and spreads itself out flat. Lastly, in a gas the particles are no longer held together at all, but they try to fly away from each other; and unless you shut a gas in tightly and safely, it will soon have spread all over the room.
A solid, therefore, will retain the same bulk and shape unless you forcibly alter it; a liquid will retain the same bulk, but no the same shape if it be left free; a gas will not retain either the same bulk or the same shape, but will spread over as large a space as it can find wherever it can penetrate. Such simple things as these you must learn from books and by experiment.
Then you must understand what is meant by chemical attraction; and though I can explain this roughly here, you will have to make many interesting experiments before you will really learn to know this wonderful fairy power. If I dissolve sugar in water, though it disappears it still remains sugar, and does not join itself to the water. I have only to let the cup stand till the water dries, and the sugar will remain at the bottom. There has been no chemical attraction here.
But now I will put something else in water which will call up the fairy power. Here is a little piece of the metal potassium, one of the simple substances of the earth; that is to say, we cannot split it up into other substances, wherever we find it, it is always the same. Now if I put this piece of potassium on the water it does not disappear quietly like the sugar. See how it rolls round and round, fizzing violently with a blue flame burning round it, and at last goes off with a pop.
What has been happening here?
You must first know that water is made of two substances, hydrogen and oxygen, and these are not merely held together, but are joined to completely that they have lost themselves and have become water; and each atom of water is made of two atoms of hydrogen and one of oxygen.
Now the metal potassium is devotedly fond of oxygen, and the moment I threw it on the water it called the fairy "chemical attraction' to help it, and dragged the atoms of oxygen out of the water and joined them to itself. In doing this it also caught part of the hydrogen, but only half, and so the rest was left out in the cold. No, not in the cold! for the potassium and oxygen made such a great heat
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.