The Einstein Theory of Relativity | Page 5

H.A. Lorentz
consequently, one of the points is chosen as an "original point" we can, proceeding from that point, reach any other point through three steps in the common perpendicular directions in which the points are arranged. The figures showing how many meters are comprized in each of the steps may serve to indicate the place reached and to distinguish it from any other; these are, as is said, the "co-ordinates" of these places, comparable, for example, with the numbers on a map giving the longitude and latitude. Let us imagine that each point has noted upon it the three numbers that give its position, then we have something comparable with a measure with numbered subdivisions; only we now have to do, one might say, with a good many imaginary measures in three common perpendicular directions. In this "system of co-ordinates" the numbers that fix the position of one or the other of the bodies may now be read off at any moment.
This is the means which the astronomers and their mathematical assistants have always used in dealing with the movement of the heavenly bodies. At a determined moment the position of each body is fixed by its three co-ordinates. If these are given, then one knows also the common distances, as well as the angles formed by the connecting lines, and the movement of a planet is to be known as soon as one knows how its co-ordinates are changing from one moment to the other. Thus the picture that one forms of the phenomena stands there as if it were sketched on the canvas of the motionless ether.

EINSTEIN'S DEPARTURE
Since Einstein has cut loose from the ether, he lacks this canvas, and therewith, at the first glance, also loses the possibility of fixing the positions of the heavenly bodies and mathematically describing their movement--i.e., by giving comparisons that define the positions at every moment. How Einstein has overcome this difficulty may be somewhat elucidated through a simple illustration.
On the surface of the earth the attraction of gravitation causes all bodies to fall along vertical lines, and, indeed, when one omits the resistance of the air, with an equally accelerated movement; the velocity increases in equal degrees in equal consecutive divisions of time at a rate that in this country gives the velocity attained at the end of a second as 981 centimeters (32.2 feet) per second. The number 981 defines the "acceleration in the field of gravitation," and this field is fully characterized by that single number; with its help we can also calculate the movement of an object hurled out in an arbitrary direction. In order to measure the acceleration we let the body drop alongside of a vertical measure set solidly on the ground; on this scale we read at every moment the figure that indicates the height, the only co-ordinate that is of importance in this rectilinear movement. Now we ask what would we be able to see if the measure were not bound solidly to the earth, if it, let us suppose, moved down or up with the place where it is located and where we are ourselves. If in this case the speed were constant, then, and this is in accord with the special theory of relativity, there would be no motion observed at all; we should again find an acceleration of 981 for a falling body. It would be different if the measure moved with changeable velocity.
If it went down with a constant acceleration of 981 itself, then an object could remain permanently at the same point on the measure, or could move up or down itself alongside of it, with constant speed. The relative movement of the body with regard to the measure should be without acceleration, and if we had to judge only by what we observed in the spot where we were and which was falling itself, then we should get the impression that there was no gravitation at all. If the measure goes down with an acceleration equal to a half or a third of what it just was, then the relative motion of the body will, of course, be accelerated, but we should find the increase in velocity per second one-half or two-thirds of 981. If, finally, we let the measure rise with a uniformly accelerated movement, then we shall find a greater acceleration than 981 for the body itself.
Thus we see that we, also when the measure is not attached to the earth, disregarding its displacement, may describe the motion of the body in respect to the measure always in the same way--i.e., as one uniformly accelerated, as we ascribe now and again a fixed value to the acceleration of the sphere of gravitation, in a particular case the value of zero.
Of course, in the case here under consideration
Continue reading on your phone by scaning this QR Code

 / 13
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.