on adding acids.
This action of alkalies has an important bearing on the scouring of wool, for if this operation be not carried out with due care there (p. 010) is in consequence great liability to impair the lustre and strength of this fibre. From microscopical examination this effect of alkalies is seen to be due to the fact that they tend to disintegrate the fibre, loosen and open the scales, this is shown by contrasting the two fibres A and B shown in figure 4, A being a normal wool fibre, B one strongly treated with an alkali.
The alkaline carbonates have but little action on wool, none if used dilute and at temperatures below 120��?F.
[Illustration: Fig. 4.--Showing the Effects of Scouring Agents on the Wool Fibre. A. Unscoured Fibre. B. Badly Scoured Fibre.]
Soap has practically no action on wool, and is therefore an excellent scouring material for wool. The carbonate of ammonia is the best and has the least action of the alkaline carbonates, those of potash and soda if used too strong or too hot have a tendency to turn the wool yellow, the carbonate of potash leaves the wool softer and more lustrous than the carbonate of soda.
The influence of scouring agents on wool will be discussed in the chapter on cleansing wool fabrics in more detail.
Caustic or quick-lime has a similar injurious action on the wool fibre as the caustic alkalies.
#Action of Acids.#--Acids when dilute have but little influence on (p. 011) the wool fibre, their tendency is to cause a separation of the scales (see fig. 5) of the wool and so make it feel harsher. Strong acids have a disintegrating action on the wool fibre. There is a very considerable difference between the action of acids on wool and on cotton, and this difference of action is taken advantage of in the woollen industry to separate cotton from wool by the process commonly known as "carbonising," which consists in treating the fabric with a weak solution of hydrochloric acid or some other acid, then drying it; the cotton is disintegrated and falls away in the form of a powder, while the wool is not affected, sulphuric acid is used very largely in dyeing wool with the acid- and azo-colouring matters.
[Illustration: Fig. 5.--Wool Fibre Heated with Acid.]
Nitric acid affects wool in a very similar manner to the acids named above when used in a dilute form; if strong it gives a deep yellow colour and acts somewhat destructively on the fibre.
Sulphurous acid (sulphur dioxide) has no effect on the actual fibre, but exercises a bleaching action on the yellow colouring matter which the wool contains, it is therefore largely used for bleaching (p. 012) wool, being applied either in the form of gas or in solution in water; the method will be found described in another chapter. Wool absorbs sulphur dioxide in large amount, and if present is liable to retard any subsequent dyeing processes.
#Action of Other Substances.#--Chlorine and the hypochlorites have an energetic action on wool, and although they exert a bleaching action they cannot well be used for bleaching wool. Hot solutions bring about a slight oxidation of the fibre, which causes it to have a greater affinity for colouring matters; advantage is taken of this fact in the printing of delaines and woollen fabrics, while the woollen dyer would occasionally find the treatment of service. A paper by Mr. E. Lodge, in the Journal of the Society of Dyers and Colourists, 1892 (p. 41), may be consulted with advantage on this subject. Wool treated with chlorine loses its felting property, and hence becomes unshrinkable, a fact of which advantage is taken in preparing unshrinkable woollen fabrics.
When wool is boiled with solutions of metallic salts, such as the sulphate of iron, chrome, aluminium and copper, the chlorides of tin, copper and iron, the acetates of the same metals, as well as with some other salts, decomposition of the salt occurs and a deposit of the metallic oxide on the wool is obtained with the production of an acid salt which remains in solution. In some cases this action is favourably influenced by the presence of some organic acid or organic salt, as, for examples, oxalic acid and cream of tartar (potassium tartrate), along with the metallic salt.
On this fact depends the process of mordanting wool with potassium bichromate, alum, alumina sulphate, ferrous sulphate, copper sulphate, etc. The exact nature of the action which occurs is not properly understood, but there is reason for thinking that the wool fibre has the capacity of assimilating both the acid and the basic constituents of the salt employed.
Excessive treatment with many metallic salts tends to make the (p. 013) wool harsh to the feel, partly owing to the scales being opened out and partly owing to the feel
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.