problems relating to the combination of the fibre with colouring matter of various kinds, but here only a brief outline of the principles that present themselves in considering the behaviour of the cotton fibre as regards colouring matter will be given.
When the question is considered from a broad point of view, and having regard to the various affinities of the dyes for cotton; we notice (1) that there is a large number of dye-stuffs--the Benzo, Congo, Diamine, Titan, Mikado, etc., dyes--that will dye the cotton from a plain bath or from a bath containing salt, sodium sulphate, borax or similar salts; (2) that there are dyes which, like Magenta, Safranine, Auramine and Methyl violet, will not dye the cotton fibre direct, but require it to be mordanted or prepared with tannic acid; (3) that there are some dyes or rather colouring matters which, like Alizarine, Nitroso-resorcine, barwood, logwood, etc., require alumina, chrome and iron mordants; (4) that there are some dyes which, like the azo scarlet and azo colours in general, cannot be used in cotton dyeing; (5) that there are a few dyes, i.e., indigo, which do not come under this grouping.
From the results of recent investigations into the chemistry of dyeing it is now considered that for perfect dyeing to take place there must be formed on the fibre a combination which is called a "colour lake," which consists of at least two constituents; one of these is the dye-stuff or the colouring matter itself, the other being either the fibre or a mordant, if such has to be used. The question of the formation of colour lakes is one connected with the molecular constitution of the colouring matter, but much yet remains to be done before the proper functions and mode of action of the various groups or radicles in the dye-stuffs can be definitely stated. While the constitution of the dye-stuff is of importance, that of the substance being dyed is also a factor in the question of the conditions under which it is applied.
In dealing with the first of the above groups of dyes, the direct dyes, the colourist is somewhat at a loss to explain in what manner the combination with the cotton fibre is brought about. The affinity of cellulose for dyes appears to be so small and its chemical activities so weak, that to assume the existence of a reaction between the dye-stuff and the fibre, tending to the formation of a colour lake, seems to be untenable. Then, again, the chemical composition and constitution of the dyes of this group are so varied that an explanation which would hold good for one might not do so for another. The relative fastness of the dyes against washing and soaping precludes the idea of a merely mechanical absorption of the dye by the fibre; on the other hand the great difference in the fastness to soaping and light between the same dyes on cotton and wool would show that there has not been a true formation of colour lake.
The dyeing of cotton with the second group of dyes is more easily explained. The cotton fibre has some affinity for the tannic acid used in preparing it and absorbs it from the mordanting bath. The tannic acid has the property of combining with the basic constituents of these dyes and forms a true colour lake, which is firmly fixed on the fibre. The colour lake can be formed independently of the fibre by bringing the tannic acid and the dye into contact with one another.
In the case of the dyes of the third group, the formation of a colour lake between the metallic oxide and the colouring matter can be readily demonstrated. In dyeing with these colours the cotton is first of all impregnated with the mordanting oxide, and afterwards placed in the dye-bath, the mordant already fixed on the fibre then reacts with the dye, and absorbs it, thus dyeing the cotton. To some extent the dyeing of cotton with the basic dyes of the second group and the mordant dyes of the third group is almost a mechanical one, the cotton fibre taking no part in it from a chemical point of view, but simply playing the part of a base or foundation on which the colour lake may be formed. In the case of the dyes of the fourth group, there being no chemical affinity of the cotton known for them, these dyes cannot be used in a successful manner; cotton will, if immersed in a bath containing them, more or less mechanically take up some of the colour from the liquor, but such colour can be almost completely washed out again, hence these dyes are not used in cotton dyeing, although many attempts have been made to render them available.
Indigo

Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.