The Dyeing of Cotton Fabrics | Page 5

Franklin Beech
dried, the cellulose is very brittle and powdery, which in the case of cotton yarn being so treated would show itself by the yarn becoming tender and rotten. The degree of action varies with the temperature (the higher this is the stronger the action), and also according to the strength of the acid solution. Thus a 10 per cent. solution of sulphuric acid used at a temperature of 80�� C. begins to act on cotton after about five minutes' immersion, in half an hour there is a perceptible amount of disintegration, but the complete conversion of the cotton into hydrocellulose requires one hour's immersion. A dilute acid with 8 volumes of water, used in the cold, takes three hours' immersion before any action on the cotton becomes evident.
ACTION OF SULPHURIC ACID ON COTTON.
When cellulose (cotton) is immersed in strong sulphuric acid the cotton becomes gradually dissolved; as the action progresses cellulose sulphates are formed, and some hydrolytic action takes place, with the formation of sugar. This fact has long been known, but only recently has it been shown that dextrose was the variety of sugar which was formed. On diluting the strong acid solution with water there is precipitated out the hydro or oxycelluloses that have been formed, while the cellulose sulphates are retained in solution.
By suitable means the calcium, barium, or lead salts of these cellulose-sulphuric acids can be prepared. Analysis of them shows that these salts undergo hydrolysis, and lose half their sulphuric acid.
The action of strong sulphuric acid has a practical application in the production of parchment paper; unsized paper is immersed in strong acid of the proper strength for about a minute, and then immediately rinsed in water. The acid acts upon the surface of the paper and forms the cellulose-sulphuric acid which remains attached to the surface. On passing into the water this is decomposed, the acid is washed away, and the cellulose is deposited in an amorphous form on the paper, filling up its pores and rendering it waterproof and grease-proof. Such papers are now largely used for packing purposes.
ACTION OF HYDROCHLORIC ACID.
Dilute hydrochloric acid of from 1�� to 2�� Tw. in strength, used in the cold, has no action on cellulose. Cotton immersed in acids of the strength named and then well washed in water is not materially affected in any way, which is a feature of some value in connection with the bleaching of cotton, where the material has to be treated at two points in the process with weak acids. Boiling dilute hydrochloric acid of 10�� Tw. disintegrates cellulose very rapidly. The product is a white very friable powder, which if viewed under the microscope appears to be fragments of the fibre that has been used to prepare it. The product has the composition C{12}H{22}O{11}, and is therefore a hydrate of cellulose, the latter having undergone hydrolysis by taking up the elements of water according to the equation 2C{6}H{10}O{5} + H{2}O = C{12}H{22}O{11}. By further digestion with the acid, the hydrocellulose, as it is called, undergoes molecular change, and is converted into dextrine. In composition hydrocellulose resembles the product formed by the addition of sulphuric acid which has received the name of amyloid. It differs from cellulose in containing free carboxyl, CO, groups, while its hydroxyl groups, HO, are much more active in their chemical reactions.
Hydrocellulose is soluble in nitric acid, 1.5 specific gravity, without undergoing oxidation. Nitrates are formed varying in composition.
The formation of hydrocellulose has a very important bearing in woollen manufacture. It is practically impossible to obtain wool free from vegetable fibres, and it is often desirable to separate these vegetable fibres. For this purpose the goods are passed into a bath of hydrochloric acid or of weak sulphuric acid. On drying the acid converts the cotton or vegetable fibre into hydrocellulose which, being friable or powdery, can be easily removed, while the wool not having been acted on by the acid remains quite intact. The process is known as "carbonising". It may not only be done by means of the acids named but also by the use of acid salts, such as aluminium chloride, which on being heated are decomposed into free acid and basic oxide. For the same reason it is important to avoid the use of these bodies, aluminium chloride and sulphate, zinc and magnesium chlorides, etc., in the treatment of cotton fabrics; as in finishing processes, where the goods are dried afterwards, there is a great liability to form hydrocellulose with the accompaniment of the tendering of the goods.
ACTION OF NITRIC ACID.
The action of nitric acid on cellulose is a variable one, depending on many factors, strength of acid, duration of action and temperature. Naturally as nitric acid is a strong oxidising agent the action of nitric acid on cellulose is essentially in all
Continue reading on your phone by scaning this QR Code

 / 139
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.