salts, like sodium and ammonium chlorides.
=Albumens.=--A small quantity of albuminous matter is found among the impurities of cotton.
=Structure of the Cotton Fibre.=--The cotton fibre varies in length from 1 to 2 inches, not only in fibres of the same class but also in fibres from different localities--Indian fibres varying from 0.8 in the shortest to 1.4 in the longest stapled varieties; Egyptian cotton fibres range from 1.1 to 1.6 inches long; American cotton ranges from 0.8 in the shortest to 2 inches in the longest fibres. The diameter is about 1/1260 of an inch. When seen under the microscope fully ripe cotton presents the appearance of irregularly twisted ribbons, with thick rounded edges. The thickest part is the root end, or point of attachment to the seed. The free end terminates in a point. The diameter is fairly uniform through 3/4 to 7/8 of its length, the rest is taper. In Fig. 1 is given some illustrations of the cotton fibre, showing this twisted and ribbon-like structure, while in Fig. 1A is given some transverse sections of the fibre. These show that it is a collapsed cylinder, the walls being of considerable thickness when compared with the internal bore or canal.
Perfectly developed, well-formed cotton fibres always present this appearance. But all commercial cottons contain more or less of fibres which are not perfectly developed or are unripe. These are known as "dead fibres"; they do not spin well and they do not dye well. On examination under the microscope it is seen that these fibres have not the flattened, twisted appearance of the ripe fibres, but are flatter, and the central canal is almost obliterated and the fibres are but little twisted. Dead fibres are thin, brittle and weak.
=Composition of the Cotton Fibres.=--Of all the vegetable textile fibres cotton is found to have the simplest chemical composition and to be, as it were, the type substance of all such fibres, the others differing from it in several respects. When stripped of the comparatively small quantities of impurities, cotton is found to consist of a substance to which the name of cellulose has been given.
[Illustration: FIG. 1.--Cotton Fibre.] [Illustration: FIG. 1A.]
Cellulose is a compound of the three elements, carbon, hydrogen and oxygen, in the proportions shown in the following analysis:--
Carbon, 44.2 per cent., Hydrogen, 6.3 per cent., Oxygen, 49.5 per cent.,
which corresponds to the empirical formula C{6}H{10}O{5}, which shows it to belong to the group of carbo-hydrates, that is, bodies which contain the hydrogen and oxygen present in them in the proportion in which they are present in water, namely H{2}O.
Cellulose may be obtained in a pure condition from cotton by treatment with alkalies, followed by washing, and by treatment with alkaline hypochlorites, acids, washing and, finally, drying. As thus obtained it is a white substance having the form of the fibre from which it is procured, showing a slight lustre, and is slightly translucent. The specific gravity is 1.5, it being heavier than water. It is characterised by being very inert, a property of considerable value from a technical point of view, as enabling the fibres to stand the various operations of bleaching, dyeing, printing, finishing, etc. Nevertheless, by suitable means, cellulose can be made to undergo various chemical decompositions which will be noted in some detail.
Cellulose on exposure to the air will absorb moisture or water. This is known as hygroscopic moisture, or "water of condition". The amount in cotton is about 8 per cent., and it has a very important bearing on the spinning properties of the fibre, as it makes the fibre soft and elastic, while absolutely dry cotton fibre is stiff, brittle and non-elastic; hence it is easier to spin and weave cotton in moist climates or weather than in dry climates or weather. Cotton cellulose is insoluble in all ordinary solvents, such as water, ether, alcohol, chloroform, benzene, etc., and these agents have no influence in any way on the material, but it is soluble in some special solvents that will be noted later on.
ACTION OF ALKALIES.
The action of alkalies on cellulose or cotton is one of great importance in view of the universal use of alkaline liquors made from soda or caustic soda in the scouring, bleaching and dyeing of cotton, while great interest attaches to the use of caustic soda in the "mercerising" of cotton.
Dilute solutions of the caustic alkalies, caustic soda or caustic potash, of from 2 to 7 per cent. strength, have no action on cellulose or cotton, in the cold, even when a prolonged digestion of the fibre with the alkaline solution takes place. Caustic alkali solutions of from 1 to 2 per cent. strength have little or no action even when used at high temperatures and under considerable pressure--a fact of very great importance from a bleacher's point of
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.