The Dominion of the Air | Page 6

J.M. Bacon
Philosophy, and with complete cock-sureness was teaching mankind all about everything. Let us look at some of his utterances which may help to throw light on the way he regarded the problem we are dealing with.
"It is reported," Francis Bacon writes, "that the Leucacians in ancient time did use to precipitate a man from a high cliffe into the sea; tying about him, with strings, at some distance, many great fowles; and fixing unto his body divers feathers, spread, to breake the fall. Certainly many birds of good wing (as Kites and the like) would beare up a good weight as they flie. And spreading of feathers, thin and close, and in great breadth, will likewise beare up a great weight, being even laid without tilting upon the sides. The further extension of this experiment of flying may be thought upon."
To say the least, this is hardly mechanical. But let us next follow the philosopher into the domain of Physics. Referring to a strange assertion, that "salt water will dissolve salt put into it in less time than fresh water will dissolve it," he is at once ready with an explanation to fit the case. "The salt," he says, "in the precedent water doth by similitude of substance draw the salt new put in unto it." Again, in his finding, well water is warmer in winter than summer, and "the cause is the subterranean heat which shut close in (as in winter) is the more, but if it perspire (as it doth in summer) it is the less." This was Bacon the Lord. What a falling off--from the experimentalist's point of view--from Bacon the Friar! We can fancy him watching a falcon poised motionless in the sky, and reflecting on that problem which to this day fairly puzzles our ablest scientists, settling the matter in a sentence: "The cause is that feathers doe possess upward attractions." During four hundred years preceding Lord Verulam philosophers would have flown by aid of a broomstick. Bacon himself would have merely parried the problem with a platitude!
At any rate, physicists, even in the brilliant seventeenth century, made no material progress towards the navigation of the air, and thus presently let the simple mechanic step in before them. Ere that century had closed something in the nature of flight had been accomplished. It is exceedingly hard to arrive at actual fact, but it seems pretty clear that more than one individual, by starting from some eminence, could let himself fall into space and waft himself away for some distance with fair success and safety, It is stated that an English Monk, Elmerus, flew the space of a furlong from a tower in Spain, a feat of the same kind having been accomplished by another adventurer from the top of St. Mark's at Venice.
In these attempts it would seem that the principle of the parachute was to some extent at least brought into play. If also circumstantial accounts can be credited, it would appear that a working model of a flying machine was publicly exhibited by one John Muller before the Emperor Charles V. at Nuremberg. Whatever exaggeration or embellishment history may be guilty of it is pretty clear that some genuine attempts of a practical and not unsuccessful nature had been made here and there, and these prompted the flowery and visionary Bishop Wilkins already quoted to predict confidently that the day was approaching when it "would be as common for a man to call for his wings as for boots and spurs."
We have now to return to the "tame goose" method, which found its best and boldest exponent in a humble craftsman, by name Besnier, living at Sable, about the year 1678. This mechanical genius was by trade a locksmith, and must have been possessed of sufficient skill to construct an efficient apparatus out of such materials as came to his hand, of the simplest possible design. It may be compared to the earliest type of bicycle, the ancient "bone shaker," now almost forgotten save by those who, like the writer, had experience of it on its first appearance. Besnier's wings, as it would appear, were essentially a pair of double-bladed paddles and nothing more, roughly resembling the double-paddle of an old-fashioned canoe, only the blades were large, roughly rectangular, and curved or hollowed. The operator would commence by standing erect and balancing these paddles, one on each shoulder, so that the hollows of the blades should be towards the ground. The forward part of each paddle was then grasped by the hands, while the hinder part of each was connected to the corresponding leg. This, presumably, would be effected after the arms had been raised vertically, the leg attachment being contrived in some way which experience would dictate.
The flyer was now fully equipped,
Continue reading on your phone by scaning this QR Code

 / 114
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.