but also as one whose activities or workings are ultimately cellular in origin. Structure and function are inseparable, and if an animal or a plant is an aggregate of cells, then its whole varied life must be the sum total of the lives of its constituent cells. Should these units be subtracted from an animal, one by one, there would be no material organism left when the last cells had been disassociated, and there would be no organic activity remaining when the last individual cell-life was destroyed. All the various things we do in the performance of our daily tasks are done by the combined action of our muscle and nerve and other tissue cells; our life is all of their lives, and nothing more. The cell, then, is the physiological or functional unit, as truly as it is the material element of the organic world. Being combined with countless others, specialized in various ways, relations are established which are like those exhibited by the human beings constituting a nation. In this case the life of the community consists of the activities of the diverse human units that make it up. The farmer, the manufacturer, the soldier, clerk, and artisan do not all work in the same way; they undertake one or another of the economic tasks which they may be best fitted by circumstances to perform. Their differentiation and division of labor are identical with the diversity in structure and in function as well, exhibited by the cells of a living creature. We might speak of the several states as so many organs of our own nation; the commercial or farming or manufacturing communities of a state would be like the tissues forming an organ, made up ultimately of human units, which, like cells, are engaged in similar activities. As the individual human lives and the activities of differentiated economic groups constitute the life of a nation and national existence, so cell-lives make the living of an organism, and the expressions "division of labor" and "differentiation" come to have a biological meaning and application.
* * * * *
The cell, then, is in all respects the very unit of the organic world. Not only is it the ultimate structural element of all the more familiar animals and plants that we know, as the foregoing analysis demonstrates, but, in the second place, the microscope reveals simple little organisms, like Amoeba, the yeast plant and bacteria, which consist throughout their lives of just one cell and nothing more. Still more wonderful is the fact that the larger complex organisms actually begin existence as single cells. In three ways, therefore,--the analytic, the comparative, and the developmental,--the cell proves to be the "organic individual of the first order." As the ultimate biological unit, its essential nature must possess a profound interest, for in its substance resides the secret of life.
This wonderful physical basis of life is called protoplasm. It contains three kinds of chemical compounds known as the proteins, carbohydrates, and hydrocarbons. Proteins are invariably present in living cells, and are made up of carbon, hydrogen, nitrogen, sulphur, and usually a little phosphorus. The elements are also combined in a very complex chemical way. For example, the substance called haemoglobin is the protein which exists in the red blood cells and which causes those cells to appear light red or yellow when seen singly. Its chemical formula states the precise number of atoms which enter into the constitution of a single molecule as: C_{600}H_{960}N_{154}FeO_{179}. This is truly a marvelously complex substance when compared with the materials of the inorganic world, like water, for example, which has the formula H_{2}O. And just as the peculiar properties of H_{2}O are given to it by the properties of the hydrogen and the oxygen which combine to form it, just so, the scientist believes, the marvelous properties of protein are due to the assemblage of the properties of the carbon and hydrogen and other elements which enter into its composition.
It would be interesting to see how each one of these elements contributes some particular characteristic to the whole compound. The carbon atom, for example, is prone to combine with other atoms in definite varied ways, and the high degree of complexity which the protein molecule possesses may depend in greater part upon the combining power of its carbon elements. The nitrogen atom makes the protein an extremely volatile compound, so that the latter burns readily in the tissue cells; and the hydrogen and oxygen bring their specific characteristics to the total molecule. And furthermore, it is evident that the great complexity of this constituent, protein, gives to protoplasm its power of doing work, or, in a word, its power of living. In constructing it, much energy has been absorbed and stored up as potential energy, and so, like
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.