The Chemistry of Hat Manufacturing | Page 6

Watson Smith
but are much more widely diffused. Most of the higher members of the mammalia family possess a hairy covering of some sort, and in by far the larger number is found a tendency to produce an undergrowth of fine woolly fibre, especially in the winter time. The differences of human hair and hairs generally, from the higher to the lower forms of mammalia, consist only in variations of size and arrangement as regards the cells composing the different parts of the fibre, as well as in a greater or less development of the scales on the covering or external hair surface. Thus, under the microscope, the wool and hairs of various animals, as also even hairs from different parts of the same animal, show a great variety of structure, development, and appearance.
[Illustration: FIG. 5.]
[Illustration: FIG. 6.]
[Illustration: FIG. 7.]
[Illustration: FIG. 8.]
[Illustration: FIG. 9.]
[Illustration:
Finest merino wool fibre. Typical wool fibre. Fibre of wool from Chinese sheep.
FIG. 10.]
[Illustration: FIG. 11.]
[Illustration: FIG. 12.]
We have already observed that hair, if needed for felting, is all the better--provided, of course, no injury is done to the fibre itself--for some treatment, by which the scales otherwise lying flatter on the hair-shafts than in the case of the hairs of wool, are made to stand up somewhat, extending outwards their free edges. This brings me to the consideration of a practice pursued by furriers for this purpose, and known as the sécretage or "carrotting" process; it consists in a treatment with a solution of mercuric nitrate in nitric acid, in order to improve the felting qualities of the fur. This acid mixture is brushed on to the fur, which is cut from the skin by a suitable sharp cutting or shearing machine. A Manchester furrier, who gave me specimens of some fur untreated by the process, and also some of the same fur that had been treated, informed me that others of his line of business use more mercury than he does, i.e. leave less free nitric acid in their mixture; but he prefers his own method, and thinks it answers best for the promotion of felting. The treated fur he gave me was turned yellow with the nitric acid, in parts brown, and here and there the hairs were slightly matted with the acid. In my opinion the fur must suffer from such unequal treatment with such strong acid, and in the final process of finishing I should not be surprised if difficulty were found in getting a high degree of lustre and finish upon hairs thus roughened or partially disintegrated. Figs. 11 and 12 respectively illustrate fur fibres from different parts of the same hare before and after the treatment. In examining one of these fibres from the side of a hare, you see what the cause of this roughness is, and what is also the cause of the difficulty in giving a polish or finish. The free edges are partially disintegrated, etched as it were, besides being caused to stand out. A weaker acid ought to be used, or more mercury and less acid. As we shall afterwards see, another dangerous agent, if not carefully used, is bichrome (bichromate of potassium), which is also liable to roughen and injure the fibre, and thus interfere with the final production of a good finish.

LECTURE II
TEXTILE FIBRES, PRINCIPALLY WOOL, FUR, AND HAIR--Continued
With regard to the preparation of fur by acid mixtures for felting, mentioned in the last lecture, I will tell you what I think I should recommend. In all wool and fur there is a certain amount of grease, and this may vary in different parts of the material. Where there is most, however, the acid, nitric acid, or nitric acid solution of nitrate of mercury, will wet, and so act on the fur, least. But the action ought to be uniform, and I feel sure it cannot be until the grease is removed. I should therefore first wash the felts on the fur side with a weak alkaline solution, one of carbonate of soda, free from any caustic, to remove all grease, then with water to remove alkali; and my belief is that a weaker and less acid solution of nitric acid and nitrate of mercury, and a smaller quantity of it, would then do the work required, and do it more uniformly.
A question frequently asked is: "Why will dead wool not felt?" Answer: If the animal become weak and diseased, the wool suffers degradation; also, with improvement in health follows pari passu, improvement in the wool structure, which means increase both in number and vigour of the scales on the wool fibres, increase of the serrated ends of these, and of their regularity. In weakness and disease the number of scales in a given hair-shaft diminishes, and these become finer and less pronounced. The fibres
Continue reading on your phone by scaning this QR Code

 / 60
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.