users are co-developers. Each one approaches the task of bug characterization with a slightly different perceptual set and analytical toolkit, a different angle on the problem. The ``Delphi effect'' seems to work precisely because of this variation. In the specific context of debugging, the variation also tends to reduce duplication of effort.
So adding more beta-testers may not reduce the complexity of the current ``deepest'' bug from the developer's point of view, but it increases the probability that someone's toolkit will be matched to the problem in such a way that the bug is shallow to that person.
Linus coppers his bets, too. In case there are serious bugs, Linux kernel version are numbered in such a way that potential users can make a choice either to run the last version designated ``stable'' or to ride the cutting edge and risk bugs in order to get new features. This tactic is not yet systematically imitated by most Linux hackers, but perhaps it should be; the fact that either choice is available makes both more attractive. [HBS]
How Many Eyeballs Tame Complexity
It's one thing to observe in the large that the bazaar style greatly accelerates debugging and code evolution. It's another to understand exactly how and why it does so at the micro-level of day-to-day developer and tester behavior. In this section (written three years after the original paper, using insights by developers who read it and re-examined their own behavior) we'll take a hard look at the actual mechanisms. Non-technically inclined readers can safely skip to the next section.
One key to understanding is to realize exactly why it is that the kind of bug report non-source-aware users normally turn in tends not to be very useful. Non-source-aware users tend to report only surface symptoms; they take their environment for granted, so they (a) omit critical background data, and (b) seldom include a reliable recipe for reproducing the bug.
The underlying problem here is a mismatch between the tester's and the developer's mental models of the program; the tester, on the outside looking in, and the developer on the inside looking out. In closed-source development they're both stuck in these roles, and tend to talk past each other and find each other deeply frustrating.
Open-source development breaks this bind, making it far easier for tester and developer to develop a shared representation grounded in the actual source code and to communicate effectively about it. Practically, there is a huge difference in leverage for the developer between the kind of bug report that just reports externally-visible symptoms and the kind that hooks directly to the developer's source-code-based mental representation of the program.
Most bugs, most of the time, are easily nailed given even an incomplete but suggestive characterization of their error conditions at source-code level. When someone among your beta-testers can point out, "there's a boundary problem in line nnn", or even just "under conditions X, Y, and Z, this variable rolls over", a quick look at the offending code often suffices to pin down the exact mode of failure and generate a fix.
Thus, source-code awareness by both parties greatly enhances both good communication and the synergy between what a beta-tester reports and what the core developer(s) know. In turn, this means that the core developers' time tends to be well conserved, even with many collaborators.
Another characteristic of the open-source method that conserves developer time is the communication structure of typical open-source projects. Above I used the term "core developer"; this reflects a distinction between the project core (typically quite small; a single core developer is common, and one to three is typical) and the project halo of beta-testers and available contributors (which often numbers in the hundreds).
The fundamental problem that traditional software-development organization addresses is Brook's Law: ``Adding more programmers to a late project makes it later.'' More generally, Brooks's Law predicts that the complexity and communication costs of a project rise with the square of the number of developers, while work done only rises linearly.
Brooks's Law is founded on experience that bugs tend strongly to cluster at the interfaces between code written by different people, and that communications/coordination overhead on a project tends to rise with the number of interfaces between human beings. Thus, problems scale with the number of communications paths between developers, which scales as the square of the humber of developers (more precisely, according to the formula N*(N - 1)/2 where N is the number of developers).
The Brooks's Law analysis (and the resulting fear of large numbers in development groups) rests on a hidden assummption: that the communications structure of the project is necessarily a complete graph, that everybody talks to everybody else. But on open-source projects, the halo developers work on what are in effect separable parallel subtasks and interact with each other very little; code changes and bug reports stream through
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.