The Birth-Time of the World | Page 4

John Joly
important date in Science. For in taking into our minds the spacious history of the universe, the world's age must play the part of time-unit upon which all our conceptions depend. If we date the geological history of the Earth by thousands of years, as did our forerunners, we must shape our ideas of planetary time accordingly; and the duration of our solar system, and of the heavens, becomes comparable with that of the dynasties of ancient nations. If by millions of years, the sun and stars are proportionately venerable. If by hundreds or thousands of millions of
2
years the human mind must consent to correspondingly vast epochs for the duration of material changes. The geological age plays the same part in our views of the duration of the universe as the Earth's orbital radius does in our views of the immensity of space. Lucretius knew nothing of our time-unit: his unit was the life of a man. So also he knew nothing of our space-unit, and he marvels that so small a body as the sun can shed so much, heat and light upon the Earth.
A study of the rocks shows us that the world was not always what it now is and long has been. We live in an epoch of denudation. The rains and frosts disintegrate the hills; and the rivers roll to the sea the finely divided particles into which they have been resolved; as well as the salts which have been leached from them. The sediments collect near the coasts of the continents; the dissolved matter mingles with the general ocean. The geologist has measured and mapped these deposits and traced them back into the past, layer by layer. He finds them ever the same; sandstones, slates, limestones, etc. But one thing is not the same. Life grows ever less diversified in character as the sediments are traced downwards. Mammals and birds, reptiles, amphibians, fishes, die out successively in the past; and barren sediments ultimately succeed, leaving the first beginnings of life undecipherable. Beneath these barren sediments lie rocks collectively differing in character from those above: mainly volcanic or poured out from fissures in
3
the early crust of the Earth. Sediments are scarce among these materials.[1]
There can be little doubt that in this underlying floor of igneous and metamorphic rocks we have reached those surface materials of the earth which existed before the long epoch of sedimentation began, and before the seas came into being. They formed the floor of a vaporised ocean upon which the waters condensed here and there from the hot and heavy atmosphere. Such were the probable conditions which preceded the birth-time of the ocean and of our era of life and its evolution.
It is from this epoch we date our geological age. Our next purpose is to consider how long ago, measured in years, that birth-time was.
That the geological age of the Earth is very great appears from what we have already reviewed. The sediments of the past are many miles in collective thickness: yet the feeble silt of the rivers built them all from base to summit. They have been uplifted from the seas and piled into mountains by movements so slow that during all the time man has been upon the Earth but little change would have been visible. The mountains have again been worn down into the ocean by denudation and again younger mountains built out of their redeposited materials. The contemplation of such vast events
[1] For a description of these early rocks, see especially the monograph of Van Hise and Leith on the pre-Cambrian Geology of North America (Bulletin 360, U.S. Geol. Survey).
4
prepares our minds to accept many scores of millions of years or hundreds of millions of years, if such be yielded by our calculations.
THE AGE AS INFERRED FROM THE THICKNESS OF THE SEDIMENTS
The earliest recognised method of arriving at an estimate of the Earth's geological age is based upon the measurement of the collective sediments of geological periods. The method has undergone much revision from time to time. Let us briefly review it on the latest data.
The method consists in measuring the depths of all the successive sedimentary deposits where these are best developed. We go all over the explored world, recognising the successive deposits by their fossils and by their stratigraphical relations, measuring their thickness and selecting as part of the data required those beds which we believe to most completely represent each formation. The total of these measurements would tell us the age of the Earth if their tale was indeed complete, and if we knew the average rate at which they have been deposited. We soon, however, find difficulties in arriving at the quantities we require. Thus it is not easy to measure the real thickness of a deposit. It may be folded
Continue reading on your phone by scaning this QR Code

 / 98
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.