certain that any observation is absolutely exact and exhaustive. Hence it follows that any given generalisation from observation may be true, within the limits of our powers of observation at a given time, and yet turn out to be untrue, when those powers of observation are directly or indirectly enlarged. Or, to put the matter in another way, a doctrine which is untrue absolutely, may, to a very great extent, be susceptible of an interpretation in accordance with the truth. At a certain period in the history of astronomical science, the assumption that the planets move in circles was true enough to serve the purpose of correlating such observations as were then possible; after Kepler, the assumption that they move in ellipses became true enough in regard to the state of observational astronomy at that time. We say still that the orbits of the planets are ellipses, because, for all ordinary purposes, that is a sufficiently near approximation to the truth; but, as a matter of fact, the centre of gravity of a planet describes neither an ellipse or any other simple curve, but an immensely complicated undulating line. It may fairly be doubted whether any generalisation, or hypothesis, based upon physical data is absolutely true, in the sense that a mathematical proposition is so; but, if its errors can become apparent only outside the limits of practicable observation, it may be just as usefully adopted for one of the symbols of that algebra by which we interpret nature, as if it were absolutely true.
The development of every branch of physical knowledge presents three stages which, in their logical relation, are successive. The first is the determination of the sensible character and order of the phenomena. This is Natural History, in the original sense of the term, and here nothing but observation and experiment avail us. The second is the determination of the constant relations of the phenomena thus defined, and their expression in rules or laws. The third is the explication of these particular laws by deduction from the most general laws of matter and motion. The last two stages constitute Natural Philosophy in its original sense. In this region, the invention of verifiable hypotheses is not only permissible, but is one of the conditions of progress.
[Sidenote: and mutual assistance of observation, experiment, and speculation.]
Historically, no branch of science has followed this order of growth; but, from the dawn of exact knowledge to the present day, observation, experiment, and speculation have gone hand in hand; and, whenever science has halted or strayed from the right path, it has been, either because its votaries have been content with mere unverified or unverifiable speculation (and this is the commonest case, because observation and experiment are hard work, while speculation is amusing); or it has been, because the accumulation of details of observation has for a time excluded speculation.
[Sidenote: Recognition of these truths in recent times, and consequent progress.]
The progress of physical science, since the revival of learning, is largely due to the fact that men have gradually learned to lay aside the consideration of unverifiable hypotheses; to guide observation and experiment by verifiable hypotheses; and to consider the latter, not as ideal truths, the real entities of an intelligible world behind phenomena, but as a symbolical language, by the aid of which nature can be interpreted in terms apprehensible by our intellects. And if physical science, during the last fifty years, has attained dimensions beyond all former precedent, and can exhibit achievements of greater importance than any former such period can show, it is because able men, animated by the true scientific spirit, carefully trained in the method of science, and having at their disposal immensely improved appliances, have devoted themselves to the enlargement of the boundaries of natural knowledge in greater number than during any previous half-century of the world's history.
[Sidenote: The three great achievements. Doctrines of (1) molecular constitution of matter, (2) conservation of energy, (3) evolution.]
I have said that our epoch can produce achievements in physical science of greater moment than any other has to show, advisedly; and I think that there are three great products of our time which justify the assertion. One of these is that doctrine concerning the constitution of matter which, for want of a better name, I will call 'molecular;' the second is the doctrine of conservation of energy; the third is the doctrine of evolution. Each of these was foreshadowed, more or less distinctly, in former periods of the history of science; and, so far is either from being the outcome of purely inductive reasoning, that it would be hard to overrate the influence of metaphysical, and even of theological, considerations upon the development of all three. The peculiar merit of our epoch is that it has shown how these hypotheses connect
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.