Synthetic Tannins | Page 9

Georg Grasser
| | HO V ---O.CO--- V OH OH OH
By heating ellagic acid for three-quarters of an hour at 185�� C. with concentrated sulphuric acid, ceruleo-ellagic acid (dioxyellagic acid), C_14H_6O_10, is formed as yellowish needles, M.P. 360�� C., which are but little soluble in the usual solvents. The acid is slightly soluble in strong caustic soda solution, the colour of the solution, on diluting, changing to green and blue.
LUTEIC ACID (Luteo Saure, pentoxybiphenylmethylolide carboxylic acid),C_14H_8O_9, occurs, in addition to ellagic acid, in myrabolams-- [Footnote: Ber., 1909, 42, 353.]
----CO.O---- ^ ---------- ^ OH | | | | HO V OH HOOC V OH OH OH
It is obtained by extracting myrabolams for one hour and a half, under reflux condenser, with pyridine, filtering and adding twice the volume of water to the filtrate and boiling till complete solution is obtained. After about thirty hours a reddish powder deposits, from which ellagic acid may be extracted with pyridine; the mother-liquor on being concentrated yields luteic acid. It is also obtained by oxidising tannin with hydrogen peroxide, the other oxidation product being ellagic acid, and the two may then be separated as indicated above. Luteic acid forms reddish needles which are decomposed, with evolution of gas, at 338��-341�� C. Heated with 10 per cent. caustic soda solution it yields ellagic acid. In pyridine solution the carboxyl group maybe eliminated by hydrogen iodide, whereby pentoxybiphenylmethylolide is formed as long silky needles, which do not melt below 300�� C. The same substance may also be obtained when ellagic acid is boiled with concentrated caustic potash solution. When luteic acid is treated with diazomethane, it yields the methyl ester of pentamethoxybiphenylmethylolidcarboxylic acid.
4. DEPSIDES
The most common decomposition products of the natural tannoids are hydroxybenzoic acids, notably gallic and proto-catechuic acids; furthermore, other aromatic and aliphatic hydroxy compounds frequently occur. So far, however, attempts at explaining the constitution of the complex decomposition products obtained by hydrolysing high molecular tannoids have not been successful. On the other hand, the constitution of the simpler natural tannoids is known to a greater or less extent; of these, lecanoric acid (Lecanors?ure) is the best known, being an ester anhydride of orsellic acid (a dihydroxytoluylic acid). It combines with erythrite, forming another tannoid, erythrine. The fact that hydroxybenzoic acids are constantly encountered together with the products obtained on hydrolysis of the tannins, seems to point toward the conclusion that anhydrides of hydroxybenzoic acids are frequent constituents of the natural tannoid molecules.
The assumption that, for instance, in tannin at least part of the gallic acid radicals are combined with one another is highly probable, and is supported by the formation of tri- and dimethylgallic acid from methylotannin, [Footnote: Herzig, _Monatshefte f. Chemie_, 1909, 30, 343.] and by the formation of ellagic acid when tannin is oxidised. [Footnote: Nierenstein, Ber., 1908, 41, 3015.] Further proof is brought forward by the existence of the pentacetyl-tannin, [Footnote: Schiff, _Ann. d. Chem_., 1873, 170, 73.] and by the results of hydrolysis which has yielded up to 104 per cent. anhydrous gallic acid fiom tannin [Footnote: Sisley, _Bull. Soc. Chim_. 1909, 5, 727.]
Of the three classes of isomeric anhydrides which can be formed from hydroxybenzoic acids, the chemistry of the natural tannins is only concerned with the class comprising the ester anhydrides. If the carboxyl of the first molecule combines with a hydroxyl of the second molecule (ester formation), then a substance possessing character similar to that of a hydroxybenzoic acid is formed, which is capable of combining up with a further molecule in the same way. It is natural to assume that this ester form is much more prevalent in Nature than a combination of two carboxyls by the elimination of water. From the point of view of the chemistry of the tannins, therefore, the starting-point would naturally be that of synthesising the ester anhydrides of hydroxybenzoic acids. Amongst the small number of synthetically prepared ester anhydrides of hydroxybenzoic acids, a few occur exhibiting the properties of the natural tannoids.
In order to simplify the terminology of these substances, Fischer [Footnote: Liebig's Ann., 1910, 372, 35.] proposed the name "Depsides" from [Greek: depheiv] = to tan. In analogy with peptides and saccharides, the names di-, tri-, and polydepsides of hydroxybenzoic acids would be suitable for these substances.
The principles underlying the synthesis of depsides are the following:--If the chlorides of carbomethoxy (or carbethoxy) hydroxybenzoic acids are coupled with the sodium salts of hydroxybenzoic acids, esters are formed, _e.g._,
CH_3CO O.O.C_6H_4.CO.Cl + NaO.C_6H_4.COO.Na = NaCl + CH_3.COO.O.C_6H_4.CO.O.C_6H_4.COO.Na
On gently saponifying the esters, these are converted into the corresponding hydroxy derivatives--
OH.C_6H_4.CO.O.C_6H_4.COOH
According to Fischer and Freudenberg, [Footnote: Liebig's _Ann._, 1909, 372, 32.] this method possesses the following advantages:--
1. The synthesis takes place at low temperatures, so that any intramolecular rearrangements are improbable.
2. The composition of the substances is controlled by the intermediary compounds, the carboalkyloxy derivatives.
3. The
Continue reading on your phone by scaning this QR Code

 / 52
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.