Steam Steel and Electricity | Page 6

James W. Steele
the others began at the beginning.
[Illustration: EARLY NEWCOMEN PUMPING ENGINE. STEAM-COCK, COLD WATER COCK AND WASTE-SPIGOT ALL WORKED BY HAND.]
In 1711, almost a hundred years after the arrival at Jamestown and Plymouth of the fathers of our present civilization, the steam-engine that is called Newcomen's began to be used for the pumping of water out of mines. This engine, slightly modified, and especially by the boy who invented the automatic cut-off for the steam valves, was a most rude and clumsy machine measured by our ideas. There appears to have been scarcely a single feature of it that is now visible in a modern engine. The cylinder was always vertical. It had the upper end open, and was a round iron vessel in which a plunger moved up and down. Steam was let in below this plunger, and the walking-beam with which it was connected by a rod had that end of it raised. When raised the steam was cut off, and all that was then under the piston was condensed by a jet of cold water. The outside air-pressure then acted upon it and pushed it down again. In this down-stroke by air-pressure the work was done. The far end of the walking-beam was even counter-weighted to help the steam-pressure. The elastic force of compressed steam was not depended upon, was hardly even known, in this first working and practical engine of the world. Every engine of that time was an experimental structure by itself. The boiler, as we use it, was unknown. Often it was square, stayed and braced against pressure in a most complicated way. Yet the Newcomen engine held its place for about seventy-five years; a very long time in our conception, and in view of the vast possibilities that we now know were before the science. [Footnote: As late as 1880, the steam-engine illustrated and described in the "natural philosophy" text books was still the Newcomen, or Newcomen-Watt engine, and this while that engine was almost unknown in ordinary circumstances, and double-acting high-pressure engines were in operation everywhere. This last, without which not much could be done that is now done, was evidently for a long time after it came into use regarded as a dangerous and unphilosophical experiment, hardly scientific, and not destined to be permanently adopted.]
In the year 1760, James Watt, who was by occupation what is now known as a model-maker, and who lived in Glasgow, was called upon to repair a model of a Newcomen engine belonging to the university. While thus engaged he was impressed with the great waste of steam, or of time and fuel, which is the same thing, involved in the alternate heating and cooling of Newcomen's cylinder. To him occurred the idea of keeping the cylinder as hot as the steam used in it. Watt was therefore the inventor of the first of those economies now regarded as absolute requirements in construction. He made the first "steam-jacket," and was, as well, the author of the idea of covering the cylinder with a coat of wood, or other non-conductor. He contrived a second chamber, outside of the cylinder, where the then indispensable condensation should take place. Then he gave this cylinder for the first time two heads, and let out the piston-rod through a hole in the upper head, with packing. He used steam on the upper side of the piston as well as the lower, and it will be seen that he came very near to making the modern engine.
Yet he did not make it. He was still unable to dispense with the condensing and vacuum and air-pressure ideas. Acting for the first time in the line of real efficiency, he failed to go far enough to attain it. He made a double-acting engine by the addition of many new parts; he even attained the point of applying his idea to the production of circular motion. But he merely doubled the Newcomen idea. His engine became the Newcomen-Watt. He had a condensing chamber at each end of the stroke and could therefore command a reciprocating movement. The walking-beam was retained, not for the purpose for which it is often used now, but because it was indispensable to his semi-atmospheric engine.
[Illustration: THE PERFECTED NEWCOMEN-WATT ENGINE.]
It may seem almost absurd that the universal crank-movement of an engine was ever the subject of a patent. Yet such was the case. A man named Pickard anticipated Watt, and the latter then applied to his engines the "sun-and-planet" movement, instead of the crank, until the patent on the latter expired. The steam-engine marks the beginning of a long series of troubles in the claims of patentees.
In 1782 came Watt's last steam invention, an engine that used steam expansively. This was an immense stride. He was also at the same time the
Continue reading on your phone by scaning this QR Code

 / 69
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.