reinforcing properties. Whether or not it is the rule, the mere fact that many tests have shown these so-called reinforced concrete columns to be weaker than similar plain concrete columns is amply sufficient to condemn the practice of assuming strength which may not exist. Of all parts of a building, the columns are the most vital. The failure of one column will, in all probability, carry with it many others stronger than itself, whereas a weak and failing slab or beam does not put an extra load and shock on the neighboring parts of a structure.
In Bulletin No. 10 of the University of Illinois Experiment Station,[C] a plain concrete column, 9 by 9 in. by 12 ft., stood an ultimate crushing load of 2,004 lb. per sq. in. Column 2, identical in size, and having four 5/8-in. rods embedded in the concrete, stood 1,557 lb. per sq. in. So much for longitudinal rods without hoops. This is not an isolated case, but appears to be the rule; and yet, in reading the literature on the subject, one would be led to believe that longitudinal steel rods in a plain concrete column add greatly to the strength of the column.
A paper, by Mr. M.O. Withey, before the American Society for Testing Materials, in 1909, gave the results of some tests on concrete-steel and plain concrete columns. (The term, concrete-steel, is used because this particular combination is not "reinforced" concrete.) One group of columns, namely, _W1_ to _W3_, 10-1/2 in. in diameter, 102 in. long, and circular in shape, stood an average ultimate load of 2,600 lb. per sq. in. These columns were of plain concrete. Another group, namely, _E1_ to _E3_, were octagonal in shape, with a short diameter (12 in.), their length being 120 in. These columns contained nine longitudinal rods, 5/8 in. in diameter, and 1/4-in. steel rings every foot. They stood an ultimate load averaging 2,438 lb. per sq. in. This is less than the column with no steel and with practically the same ratio of slenderness.
In some tests on columns made by the Department of Buildings, of Minneapolis, Minn.[D], Test A was a 9 by 9-in. column, 9 ft. 6 in. long, with ten longitudinal, round rods, 1/2 in. in diameter, and 1-1/2-in. by 3/16-in. circular bands (having two 1/2-in. rivets in the splice), spaced 4 in. apart, the circles being 7 in. in diameter. It carried an ultimate load of 130,000 lb., which is much less than half "the compressive resistance of a hooped member," worked out according to the authoritative quotation before given. Another similar column stood a little more than half that "compressive resistance." Five of the seventeen tests on the concrete-steel columns, made at Minneapolis, stood less than the plain concrete columns. So much for the longitudinal rods, and for hoops which are not close enough to stiffen the rods; and yet, in reading the literature on the subject, any one would be led to believe that longitudinal rods and hoops add enormously to the strength of a concrete column.
The sixteenth indictment against common practice is in reference to flat slabs supported on four sides. Grashof's formula for flat plates has no application to reinforced concrete slabs, because it is derived for a material strong in all directions and equally stressed. The strength of concrete in tension is almost nil, at least, it should be so considered. Poisson's ratio, so prominent in Grashof's formula, has no meaning whatever in steel reinforcement for a slab, because each rod must take tension only; and instead of a material equally stressed in all directions, there are generally sets of independent rods in only two directions. In a solution of the problem given by a high English authority, the slab is assumed to have a bending moment of equal intensity along its diagonal. It is quite absurd to assume an intensity of bending clear into the corner of a slab, and on the very support equal to that at its center. A method published by the writer some years ago has not been challenged. By this method strips are taken across the slab and the moment in them is found, considering the limitations of the several strips in deflection imposed by those running at right angles therewith. This method shows (as tests demonstrate) that when the slab is oblong, reinforcement in the long direction rapidly diminishes in usefulness. When the ratio is 1:1-1/2, reinforcement in the long direction is needless, since that in the short direction is required to take its full amount. In this way French and other regulations give false results, and fail to work out.
If the writer is wrong in any or all of the foregoing points, it should be easy to disprove his assertions. It would be better to do this than to
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.