Some Mooted Questions in Reinforced Concrete Design | Page 8

Edward Godfrey
stress, namely, the settlement of the arch when the forms are removed. If the initial stresses are unknown, ideal determinations of stresses can have little meaning.
The elastic theory stands or falls according as one is able or unable to calculate accurately the deflection of a reinforced concrete beam; and it is an impossibility to calculate this deflection even approximately. The tests cited by Professor Lanza show the utter disagreement in the matter of deflections. Of those tested, two beams which were identical, showed results almost 100% apart. A theory grounded on such a shifting foundation does not deserve serious consideration. Professor Lanza's conclusions, quoted under the twelfth point, have special meaning and force when applied to a reinforced concrete arch; the actual distribution of the stresses cannot possibly be determined, and complex cloaks of arithmetic cannot cover this fact. The elastic theory, far from being a reliable formula, is false and misleading in the extreme.
The fourteenth point refers to temperature calculations in a reinforced concrete arch. These calculations have no meaning whatever. To give the grounds for this assertion would be to reiterate much of what has been said under the subject of the elastic arch. If the unstressed shape of an arch cannot be determined because of the unknown effect of shrinkage and settlement, it is a waste of time to work out a slightly different unstressed shape due to temperature variation, and it is a further waste of time to work out the supposed stresses resulting from deflecting that arch back to its actual shape.
If no other method of finding the approximate stresses in an arch existed, the elastic theory might be classed as the best available; but this is not the case. There is a method which is both simple and reliable. Accuracy is not claimed for it, and hence it is in accord with the more or less uncertain materials dealt with. Complete safety, however, is assured, for it treats the arch as a series of blocks, and the cementing of these blocks into one mass cannot weaken the arch. Reinforcement can be proportioned in the same manner as for chimneys, by finding the tension exerted to pull these blocks apart and then providing steel to take that tension.
The fifteenth point concerns steel in compression in reinforced concrete columns or beams. It is common practice--and it is recommended in the most pretentious works on the subject--to include in the strength of a concrete column slender longitudinal rods embedded in the concrete. To quote from one of these works:
"The compressive resistance of a hooped member exceeds the sum of the following three elements: (1) The compressive resistance of the concrete without reinforcement. (2) The compressive resistance of the longitudinal rods stressed to their elastic limit. (3) The compressive resistance which would have been produced by the imaginary longitudinals at the elastic limit of the hooping metal, the volume of the imaginary longitudinals being taken as 2.4 times that of the hooping metal."
This does not stand the test, either of theory or practice; in fact, it is far from being true. Its departure from the truth is great enough and of serious enough moment to explain some of the worst accidents in the history of reinforced concrete.
It is a nice theoretical conception that the steel and the concrete act together to take the compression, and that each is accommodating enough to take just as much of the load as will stress it to just the right unit. Here again, initial stress plays an important part. The shrinkage of the concrete tends to put the rods in compression, the load adds more compression on the slender rods and they buckle, because of the lack of any adequate stiffening, long before the theorists' ultimate load is reached.
There is no theoretical or practical consideration which would bring in the strength of the hoops after the strength of the concrete between them has been counted. All the compression of a column must, of necessity, go through the disk of concrete between the two hoops (and the longitudinal steel). No additional strength in the hoops can affect the strength of this disk, with a given spacing of the hoops. It is true that shorter disks will have more strength, but this is a matter of the spacing of the hoops and not of their sectional area, as the above quotation would make it appear.
Besides being false theoretically, this method of investing phantom columns with real strength is wofully lacking in practical foundation. Even the assumption of reinforcing value to the longitudinal steel rods is not at all borne out in tests. Designers add enormously to the calculated strength of concrete columns when they insert some longitudinal rods. It appears to be the rule that real columns are weakened by the very means which
Continue reading on your phone by scaning this QR Code

 / 69
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.