train, and the obliquity of the falling rain, the velocity of the drops may be calculated; and knowing the speed of the earth in her orbit, and the obliquity of the rays due to this cause, we can calculate just as easily the velocity of light. Bradley did this, and the 'aberration of light,' as his discovery is called, enabled him to assign to it a velocity almost identical with that deduced by Roemer from a totally different method of observation. Subsequently Fizeau, and quite recently Cornu, employing not planetary or stellar distances, but simply the breadth of the city of Paris, determined the velocity of light: while Foucault--a man of the rarest mechanical genius--solved the problem without quitting his private room. Owing to an error in the determination of the earth's distance from the sun, the velocity assigned to light by both Roemer and Bradley is too great. With a close approximation to accuracy it may be regarded as 186,000 miles a second.
By Roemer's discovery, the notion entertained by Descartes, and espoused by Hooke, that light is propagated instantly through space, was overthrown. But the establishment of its motion through stellar space led to speculations regarding its velocity in transparent terrestrial substances. The 'index of refraction' of a ray passing from air into water is 4/3. Newton assumed these numbers to mean that the velocity of light in water being 4, its velocity in air is 3; and he deduced the phenomena of refraction from this assumption. Huyghens took the opposite and truer view. According to this great man, the velocity of light in water being 3, its velocity in air is 4; but both in Newton's time and ours the same great principle determined, and determines, the course of light in all cases. In passing from point to point, whatever be the media in its path, or however it may be refracted or reflected, light takes the course which occupies least time. Thus in fig. 4, taking its velocity in air and in water into account, the light reaches G from I more rapidly by travelling first to O, and there changing its course, than if it proceeded straight from I to G. This is readily comprehended, because, in the latter case, it would pursue a greater distance through the water, which is the more retarding medium.
�� 6. _Descartes' Explanation of the Rainbow_.
Snell's law of refraction is one of the corner-stones of optical science, and its applications to-day are million-fold. Immediately after its discovery Descartes applied it to the explanation of the rainbow. A beam of solar light falling obliquely upon a rain-drop is refracted on entering the drop. It is in part reflected at the back of the drop, and on emerging it is again refracted. By these two refractions, and this single reflection, the light is sent to the eye of an observer facing the drop, and with his back to the sun.
Conceive a line drawn from the sun, through the back of his head, to the observer's eye and prolonged beyond it. Conceive a second line drawn from the shower to the eye, and enclosing an angle of 42?�� with the line drawn from the sun. Along this second line a rain-drop when struck by a sunbeam will send red light to the eye. Every other drop similarly situated, that is, every drop at an angular distance of 42?�� from the line through the sun and eye, will do the same. A circular band of red light is thus formed, which may be regarded as the boundary of the base of a cone, with its apex at the observer's eye. Because of the magnitude of the sun, the angular width of this red band will be half a degree.
From the eye of the observer conceive another line to be drawn, enclosing an angle, not of 42?��, but of 40?��, with the prolongation of the line drawn from the sun. Along this other line a rain-drop, at its remote end, when struck by a solar beam, will send violet light to the eye. All drops at the same angular distance will do the same, and we shall therefore obtain a band of violet light of the same width as the red band. These two bands constitute the limiting colours of the rainbow, and between them the bands corresponding to the other colours lie.
Thus the line drawn from the eye to the middle of the bow, and the line drawn through the eye to the sun, always enclose an angle of about 41��. To account for this was the great difficulty, which remained unsolved up to the time of Descartes.
Taking a pen in hand, and calculating by means of Snell's law the track of every ray through a raindrop, Descartes found that, at one particular angle, the
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.