Whence comes that heat? The question is well worthy of an answer. Suppose in the first instance, when the thick wire is employed, that we permit the action to continue until 100 grains of zinc are consumed, the amount of heat generated in the battery would be capable of accurate numerical expression. Let the action then continue, with the thin wire glowing, until 100 grains of zinc are consumed. Will the amount of heat generated in the battery be the same as before? No; it will be less by the precise amount generated in the thin wire outside the battery. In fact, by adding the internal heat to the external, we obtain for the combustion of 100 grains of zinc a total which never varies. We have here a beautiful example of that law of constancy as regards natural energies, the establishment of which is the greatest achievement of modern science. By this arrangement, then, we are able to burn our zinc at one place, and to exhibit the effects of its combustion at another. In New York, for example, we may have our grate and fuel; but the heat and light of our fire may be made to appear at San Francisco.
[Illustration: Fig. 1.]
Removing the thin wire and attaching to the severed ends of the thick one two rods of coke we obtain, on bringing the rods together (as in fig. 1), a small star of light. Now, the light to be employed in our lectures is a simple exaggeration of this star. Instead of being produced by ten cells, it is produced by fifty. Placed in a suitable camera, provided with a suitable lens, this powerful source will give us all the light necessary for our experiments.
And here, in passing, I am reminded of the common delusion that the works of Nature, the human eye included, are theoretically perfect. The eye has grown for ages towards perfection; but ages of perfecting may be still before it. Looking at the dazzling light from our large battery, I see a luminous globe, but entirely fail to see the shape of the coke-points whence the light issues. The cause may be thus made clear: On the screen before you is projected an image of the carbon points, the whole of the glass lens in front of the camera being employed to form the image. It is not sharp, but surrounded by a halo which nearly obliterates the carbons. This arises from an imperfection of the glass lens, called its _spherical aberration_, which is due to the fact that the circumferential and central rays have not the same focus. The human eye labours under a similar defect, and from this, and other causes, it arises that when the naked light from fifty cells is looked at the blur of light upon the retina is sufficient to destroy the definition of the retinal image of the carbons. A long list of indictments might indeed be brought against the eye--its opacity, its want of symmetry, its lack of achromatism, its partial blindness. All these taken together caused Helmholt to say that, if any optician sent him an instrument so defective, he would be justified in sending it back with the severest censure. But the eye is not to be judged from the standpoint of theory. It is not perfect, but is on its way to perfection. As a practical instrument, and taking the adjustments by which its defects are neutralized into account, it must ever remain a marvel to the reflecting mind.
�� 3. _Rectilineal Propagation of Light. Elementary Experiments. Law of Reflection._
The ancients were aware of the rectilineal propagation of light. They knew that an opaque body, placed between the eye and a point of light, intercepted the light of the point. Possibly the terms 'ray' and 'beam' may have been suggested by those straight spokes of light which, in certain states of the atmosphere, dart from the sun at his rising and his setting. The rectilineal propagation of light may be illustrated by permitting the solar light to enter, through a small aperture in a window-shutter, a dark room in which a little smoke has been diffused. In pure air you cannot see the beam, but in smoky air you can, because the light, which passes unseen through the air, is scattered and revealed by the smoke particles, among which the beam pursues a straight course.
The following instructive experiment depends on the rectilineal propagation of light. Make a small hole in a closed window-shutter, before which stands a house or a tree, and place within the darkened room a white screen at some distance from the orifice. Every straight ray proceeding from the house, or tree, stamps its colour upon the screen, and the sum of all the rays will, therefore, be an
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.